Proteins

Product Data Sheet

γ-Aminobutyric acid

Cat. No.: HY-N0067 CAS No.: 56-12-2 Molecular Formula: C₄H₉NO₂ Molecular Weight: 103.12

Target: GABA Receptor; Endogenous Metabolite

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic Enzyme/Protease

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

	()
H_2N	\searrow	OH
•	~	OH

SOLVENT & SOLUBILITY

In Vitro

H₂O: 50 mg/mL (484.87 mM; Need ultrasonic)

Solvent Concentration Preparing 1 mM Stock Solutions 5 mM		1 mg	5 mg	10 mg
	1 mM	9.6974 mL	48.4872 mL	96.9744 mL
	5 mM	1.9395 mL	9.6974 mL	19.3949 mL
	10 mM	0.9697 mL	4.8487 mL	9.6974 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS

Solubility: 100 mg/mL (969.74 mM); Clear solution; Need ultrasonic and warming and heat to 60°C

BIOLOGICAL ACTIVITY

γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to Description the ionotropic GABA receptors (GABA_A receptors) and metabotropic receptors (GABA_B receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system^{[1][2]}.

	canning errote 2) 2100 ming opening signate or contract to the dystem.
IC ₅₀ & Target	Microbial Metabolite Human Endogenous Metabolite
In Vitro	γ-Aminobutyric acid (30 μM) depolarizes cortical progenitor cells (E16 cells), results an inward current in ventricular zone (VZ) cells, and induces DNA synthesis inhibition, with half-maximal response concentration of 5 μM ^[3] . ?Cortical plate (cp) neurons expresses glutamic acid decarboxylase (GAD), γ-Aminobutyric acid (1-5 μM; 18 h) stimulates the motility and arrests the migration of cp cells, while the chemotropic signal is involved G-protein activation ^[4] . ?γ-Aminobutyric acid activates GABA A receptors, causing cell cycle arrest in S phase and limiting growth ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Migration Assay ^[4]

Cell Line:	Cortical plate (cp) neurons
Concentration:	1-5 μΜ
Incubation Time:	18 hours
Result:	Promoted motility via G-protein activation and arrested attractantinduced migration via GABAA receptor-mediated depolarization.

In Vivo

 γ -Aminobutyric acid (33.95, 102.25, 306.75 mg/kg; p.o.; single dose) can enhance the sleep of mice^[6]. ? γ -Aminobutyric acid (1, 2, 4?mg/kg/d; p.o.; 30 d) alleviates anxiety and restored food utilization rate in rats, with impairment induced by Di(2-ethylhexyl) phthalate (DEHP) exposure^[7]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Pathogens free (SPF) Bagg's albino (Balb/c) mice (18–20 g, 8 weeks old) $^{[6]}$
Dosage:	33.95, 102.25, 306.75 mg/kg
Administration:	Oral gavage; single dose; 20 mL/kg administration; measured in an hour
Result:	Prolonged the sleep duration, increased sleep rate, and shorten the sleep latency more

Animal Model:	Sprague-Dawley rat indued by <u>DEHP</u> (HY-B1945) (500 mg/kg) ^[7]	
Dosage:	1, 2, 4 mg/kg	
Administration:	Oral gavage; combined administration; for 30 consecutive days	
Result:	Reduced the levels of nitric oxide and nitric oxide synthase in rats treated with DEHP.	

CUSTOMER VALIDATION

- · Life Sci. 2023 Oct 20:122191.
- Int J Food Sci Tech. 06 November 2021.

See more customer validations on www.MedChemExpress.com

REFERENCES

 $[1]. Chen S, et al. \ Effects of \ dietary \ gamma-aminobutyric \ acid \ supplementation \ on \ the \ intestinal \ functions \ in \ weaning \ piglets. \ Food \ Funct. \ 2019 \ Jan \ 2.$

effectively.

 $[2]. Okada\ R, et\ al.\ Gamma-aminobutyric\ acid\ (GABA)-mediated\ neural\ connections\ in\ the\ Drosophila\ antennal\ lobe.\ J\ Comp\ Neurol.\ 2009\ May\ 1;514(1):74-91.$

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com