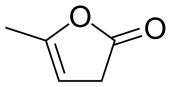


Product Data Sheet

α-Angelica lactone


Cat. No.:HY-N0548CAS No.:591-12-8Molecular Formula: $C_5H_6O_2$ Molecular Weight:98.1

Target: Glutathione S-transferase

Pathway: Metabolic Enzyme/Protease

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (1019.37 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	10.1937 mL	50.9684 mL	101.9368 mL
	5 mM	2.0387 mL	10.1937 mL	20.3874 mL
	10 mM	1.0194 mL	5.0968 mL	10.1937 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (25.48 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (25.48 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (25.48 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	α -Angelica lactone is a naturally occurring anticarcinogen and an vinylogous nucleophile. α -Angelica lactone can give the
	chiral δ -amino γ , γ -disubstituted butenolide carbonyl derivatives and exhibits electrophilic trapping at the γ -carbon. α -
	Angelica lactone exerts strong chemoprotective effects by selective enhancement of glutathione-S-thansferase (GST) and
	UDP-glucononosyltransferase (UGT) detoxification enzymes ^{[1][2][3][4]} .

IC₅₀ & Target Glutathione-S-thansferase (GST) detoxification enzyme^{[1][2]}

 ${\tt UDP-glucononosyltransferase} \ ({\tt UGT}) \ detoxification \ enzyme^{[2]}$

CUSTOMER VALIDATION

- Nat Commun. 2023 Sep 26;14(1):5984.
- Research Square Print. 2022 May.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. W A Nijhoff, et al. Quantification of Induction of Rat Oesophageal, Gastric and Pancreatic Glutathione and Glutathione S-transferases by Dietary Anticarcinogens. Carcinogenesis. 1994 Sep;15(9):1769-72.
- [2]. E M J van der Logt, et al. Induction of Rat Hepatic and Intestinal UDP-glucuronosyltransferases by Naturally Occurring Dietary Anticarcinogens. Carcinogenesis. 2003 Oct;24(10):1651-6.
- [3]. Lin Zhou, et al. Catalytic Asymmetric Vinylogous Mannich-type (AVM) Reaction of Nonactivated α-Angelica Lactone. Org Lett. 2011 Jun 17;13(12):3056-9.
- [4]. Jessica A Griswold, et al. Diastereoselective Organocatalytic Addition of α-Angelica Lactone to β-Halo-α-ketoesters. J Org Chem. 2017 Feb 17;82(4):2276-2280.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA