Physostigmine hemisulfate

Cat. No.: HY-N2320 CAS No.: 64-47-1

Molecular Formula: $C_{15}H_{21}N_3O_2.1/2H_2O_4S$

Molecular Weight: 324.38

Target: Cholinesterase (ChE) Pathway: **Neuronal Signaling**

Storage: -20°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 50 mg/mL (154.14 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	3.0828 mL	15.4140 mL	30.8280 mL
Stock Solutions	5 mM	0.6166 mL	3.0828 mL	6.1656 mL
	10 mM	0.3083 mL	1.5414 mL	3.0828 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Physostigmine hemisulfate (Eserine hemisulfate) is a reversible acetylcholinesterase (AChE) inhibitor. Physostigmine	
	hemisulfate can crosses the blood-brain barrier and stimulates central cholinergic neurotransmission. Physostigmine	
	hemisulfate can reverse memory deficits in transgenic mice with Alzheimer's disease. Physostigmine hemisulfate is also an	
	antidote for anticholinergic poisoning $^{[1][2][3][4]}$.	

IC ₅₀ & Target	AChE
In Vivo	Physostigmine hemisulfate (Eserine hemisulfate; 0.03-0.3 mg/kg; s.c.; daily for 6 weeks) improves deficits in contextual and cued memory in Tg(+) mice ^[2] . Physostigmine hemisulfate (IV; 0.1, 0.2 mg/kg) delays time to emergence from isoflurane anesthesia at doses ≥0.2 mg/kg in male Sprague-Dawley rats ^[4]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Heterozygous transgenic mice (Tg(+) mice) ^[2]
Dosage:	0.03, 0.1, and 0.3 mg/kg

Administration:	SC; daily for 6 weeks
Result:	Tended to normalize the contextual memory deficit in $Tg(+)$ animals so that they becam more similar to $Tg(-)$ animals.

CUSTOMER VALIDATION

• bioRxiv. 2024 Mar 29.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Jonathan D Kenny, et al. Physostigmine and Methylphenidate Induce Distinct Arousal States During Isoflurane General Anesthesia in Rats. Anesth Analg. 2016 Nov;123(5):1210-1219.
- [2]. Haase U, et al. Pharmakotherapie--physostigmin post OP [Pharmacotherapy--physostigmine administered post-operatively]. Anasthesiol Intensivmed Notfallmed Schmerzther. 2007;42(3):188-189.
- [3]. Dong H, et al, Bertchume A, Vallera D, Csernansky JG. Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer's disease. Psychopharmacology (Berl). 2005;181(1):145-152.
- [4]. Frascogna N. Physostigmine: is there a role for this antidote in pediatric poisonings? Curr Opin Pediatr. 2007;19(2):201-205.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA