Product Data Sheet

N-trans-Feruloyltyramine

Cat. No.:HY-N2410CAS No.:66648-43-9Molecular Formula: $C_{18}H_{19}NO_4$ Molecular Weight:313.35

Target: Reactive Oxygen Species; Apoptosis

Pathway: Immunology/Inflammation; Metabolic Enzyme/Protease; NF-кВ; Apoptosis

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (319.13 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.1913 mL	15.9566 mL	31.9132 mL
	5 mM	0.6383 mL	3.1913 mL	6.3826 mL
	10 mM	0.3191 mL	1.5957 mL	3.1913 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.98 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.98 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.98 mM); Clear solution

BIOLOGICAL ACTIVITY

Description N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid, is a potent antioxidant. N-trans-Feruloyltyramine improves H_2O_2 -induced intracellular ROS generation and decreases apoptosis. N-trans-Feruloyltyramine has the potential for oxidative stress-related neurodegenerative conditions and cancer research^{[1][2]}.

In Vitro N-trans-Feruloyltyramine (N-feruloyltyramine; 10-500 μ M; 3 hours prior H₂O₂) protects the cells against H₂O₂-induced toxicity^[1].

N-trans-Feruloyltyramine (25-100 μ M; 3 hours prior H₂O₂) with 100 μ M significantly reduces Bax and activated caspase-3 levels in H₂O₂-treated SK-N-SH cells^[1].

N-trans-Feruloyltyramine significantly improves an H_2O_2 -mediated increase in ROS levels^[1].

N-trans-Feruloyltyramine (10-500 μ M) does not affect viability of the SK-N-SH cells^[1]. N-trans-Feruloyltyramine (64-320 µM; 24 hours) shows proliferation inhibition on HepG2 cells with IC₅₀ value of 194 µM^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay^[1] Cell Line: SK-N-SH cells Concentration: $10, 25, 50, 100, 150, 250, 500 \,\mu\text{M}$ **Incubation Time:** For 3 hours prior H₂O₂ Result: Protected the cells against H₂O₂ (150 μM)-induced toxicity as determined by a significant higher percentage of viability in cells. Western Blot Analysis^[1] Cell Line: SK-N-SH cells Concentration: $25, 50, 100 \, \mu M$ **Incubation Time:** For 3 hours prior H₂O₂ Result: Abolished H₂O₂-induced Bax expression. Significantly decreased activated caspase-3 levels.

REFERENCES

[1]. Rungtip Soi-ampornkul, et al. N-trans-feruloyltyramine Protects Human Neuroblastoma SK-N-SH Cell Line Against H2O2-Induced Cytotoxicity. Natural Product Communications Volume 17, Issue 8, August 2022.

[2]. Xudong Gao, et al. Effects of N-trans-feruloyltyramine isolated from laba garlic on antioxidant, cytotoxic activities and H2O2-induced oxidative damage in HepG2 and L02 cells. Food Chem Toxicol. 2019 Aug;130:130-141.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA