L-Phenylalanine

MedChemExpress

®

Cat. No.:	HY-N0215		creen	
CAS No.:	63-91-2		guiu	
Molecular Formula:	$C_9H_{11}NO_2$	U U		
Molecular Weight:	165.19		raries	
Target:	Calcium Channel; Endogenous Metabolite; iGluR			
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic Enzyme/Protease			
Storage:	Powder -20°C	3 years	77	
	4°C	2 years	Proteins	
	In solvent -80°C	2 years	suls	
	-20°C	1 year		

SOLVENT & SOLUBILITY

		Solvent Mass Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	6.0536 mL	30.2682 mL	60.5364 mL		
		5 mM	1.2107 mL	6.0536 mL	12.1073 mL		
		10 mM	0.6054 mL	3.0268 mL	6.0536 mL		
	Please refer to the so	Please refer to the solubility information to select the appropriate solvent.					

BIOLOGICAL ACTIVITY							
Description	L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L- Phenylalanine is a α2δ subunit of voltage-dependent Ca ⁺ channels antagonist with a K _i of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (K _B of 573 μM) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals ^[1] ^{[2][3][4]} .						
IC ₅₀ & Target	Microbial Metabolite	NMDA Receptor	Human Endogenous Metabolite				
In Vitro	DAHP synthetase (DS) and chorismate mutase/prephenate dehydratase (CM/PD) are key enzymes in the L-Phenylalanine biosynthesis pathway. DS is sensitive to feedback inhibition by tyrosine, and CM/PD is subject to feedback inhibition by L-Phenylalanine ^[1] .L-Phenylalanine attenuates non-NMDA receptor function in cultured neurons with an IC ₅₀ of 980 µM ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.						

The effects of L-Phenylalanine on NMDA-activated currents (I_{NMDA}) are studied in cultured hippocampal neurons from newborn rats using the patch-clamp technique. L-Phenylalanine specifically and reversibly attenuates I_{NMDA} in a concentration-dependent manner (IC₅₀ of 1.71 mM). L-Phenylalanine inhibits specifically NMDAR current in hippocampal neurons by competing for the glycine-binding site^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Glushakov AV, et al. Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain. 2005 Feb;128(Pt 2):300-7.

[2]. Glushakov AV, et al. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 2003 Apr 1;72(1):116-24.

[3]. Glushakov AV, et al. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Mol Psychiatry. 2002;7(4):359-67.

[4]. Mortell KH, et al. Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg Med Chem Lett. 2006 Mar 1;16(5):1138-41.

[5]. Wu WB, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018 May;65(3):476-483.

Caution: Product has not been fully validated for medical applications. For research use only.