L-Phenylalanine-3-¹³C

Cat. No.:	HY-N0215S7
CAS No.:	136056-02-5
Molecular Formula:	$H_2 = H_2$
Molecular Weight:	
Target:	Calcium Channel; iGluR; Endogenous Metabolite
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling; Metabolic Enzyme/Protease NH 2
Storage:	4°C, sealed storage, away from moisture and light * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light)

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
		1 mM	6.0176 mL	30.0879 mL	60.1757 mL
		5 mM	1.2035 mL	6.0176 mL	12.0351 mL
		10 mM	0.6018 mL	3.0088 mL	6.0176 mL

DIOLOGICALACITY				
Description	L-Phenylalanine-3- ¹³ C is the ¹³ C-labeled L-Phenylalanine. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].			
IC ₅₀ & Target	NMDA Receptor			
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA