Proteins

Inhibitors

L-Isoleucine-¹³C₆

Cat. No.: HY-N0771S CAS No.: 201740-82-1 Molecular Formula: ¹³C₆H₁₃NO₂ Molecular Weight: 137.13

Target: Endogenous Metabolite; Isotope-Labeled Compounds

-20°C

Pathway: Metabolic Enzyme/Protease; Others

In solvent

Storage: Powder

> 4°C 2 years -80°C 6 months

3 years

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 12.5 mg/mL (91.15 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	7.2923 mL	36.4618 mL	72.9235 mL
	5 mM	1.4585 mL	7.2923 mL	14.5847 mL
	10 mM	0.7292 mL	3.6462 mL	7.2923 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	L-Isoleucine- 13 C ₆ is the 13 C-labeled L-Isoleucine. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Arkhipov SG, et al. New hydrophobic L-amino acid salts: maleates of L-leucine, L-isoleucine and L-norvaline. Acta Crystallogr C Struct Chem. 2015 Jul;71(Pt 7):584-92.

[2]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com