Proteins

Product Data Sheet

L-DOPA

Cat. No.: HY-N0304 CAS No.: 59-92-7 Molecular Formula: $C_9H_{11}NO_4$ 197.19 Molecular Weight:

Target: Endogenous Metabolite; Dopamine Receptor

Pathway: Metabolic Enzyme/Protease; GPCR/G Protein; Neuronal Signaling

Storage: 4°C, stored under nitrogen

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro

0.1 M HCL: 20 mg/mL (101.43 mM; ultrasonic and warming and adjust pH to 2 with HCl and heat to 60°C) H₂O: 1 mg/mL (5.07 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.0713 mL	25.3563 mL	50.7125 mL
	5 mM	1.0143 mL	5.0713 mL	10.1425 mL
	10 mM	0.5071 mL	2.5356 mL	5.0713 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS

Solubility: 3.33 mg/mL (16.89 mM); Clear solution; Need ultrasonic and warming and heat to 60°C

BIOLOGICAL ACTIVITY

Description L-DOPA (Levodopa) is an orally active metabolic precursor of neurotransmitters dopamine. L-DOPA can cross the bloodbrain barrier and is converted into dopamine in the brain. L-DOPA has anti-allodynic effects and the potential for Parkinson's disease^{[1][2][3]}.

IC₅₀ & Target Human Endogenous Metabolite

> L-DOPA can be used in animal modeling to construct a rat model of dyskinesia. L-DOPA (20 mg/kg; oral) reduces Rotenoneinduced motor dysfunction^[3].

L-DOPA (10, 30, 50, 70, and 100 mg/kg; oral) reverses tactile, cold and heat allodynia in neuropathic rat without any side effect in sprague-Dawley rats^[4].In adult common marmosets (Callithrix jacchus, 2-3 years old, 270-350 g), L-DOPA (20/5 mg/kg, p.o.) shows the T_{max} was 30 min in plasma and 60-90 min in extracellular fluid (ECF) of striatum. Mean C_{max} was 20.3 μM in plasma and 442.9 nM in ECF of striatum, which is about 2.2% of that in plasma^[6].

In Vivo

Induction of dyskinesia $model^{[5]}$

Background

L-DOPA-induced dyskinesia results from a pulsatile stimulation of brain dopamine (DA) receptors, triggering a complex cascade of molecular and synaptic alterations within the basal ganglia $^{[5]}$.

Specific Mmodeling Methods

Mice: C57Bl/6 mice?•?male?• 8 weeks (period: 21 days)

Administration: 20 mg/kg?•?ip?•?once daily for 21 days

Note

- (1) sustained unilateral 6-OHDA injections in the striatum before starting treatment.
- (2) Injection volume is 10mL/kg body weight.

Modeling Record

Behavioral changes: Shows developed abnormal involuntary movements (AIMs) affecting the head, trunk and forelimb on the side contralateral to the lesion.

Correlated Product(s): Oxidopamine hydrochloride (HY-B1081) Oxidopamine hydrobromide (HY-B1081A)

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	7-week-old C57BL/6J mice ^[3]	
Dosage:	20 mg/kg	
Administration:	Orally	
Result:	Reduced Rotenone-induced motor dysfunction.	
Animal Model:	Sprague-Dawley rats (male 100-150 g) ^[4]	
Dosage:	10, 30, 50, 70, and 100 mg/kg	
Administration:	Orally	
Result:	Reverses tactile, cold and heat allodynia in neuropathic rat without any side effect.	

CUSTOMER VALIDATION

- Int J Biol Macromol. 2020 Jun 15;153:88-99.
- Biomed Pharmacother. 2024 Apr 27:175:116664.

- Free Radic Biol Med. 2024 May 6:S0891-5849(24)00437-4.
- Antioxidants (Basel). 2022, 11(7), 1317.
- Nutrients. 2022, 14(21), 4678

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. M Lundblad, et al. Pharmacological validation of a mouse model of I-DOPA-induced dyskinesia. Exp Neurol. 2005 Jul;194(1):66-75.
- [2]. Jie Zhang, et al. Pharmacokinetics of L-dopa in plasma and extracellular fluid of striatum in common marmosets. Brain Res. 2003 Dec 12;993(1-2):54-8.
- [3]. Hyland K, et al. Aromatic L-amino acid decarboxylase deficiency: diagnostic methodology. Clin Chem. 1992 Dec;38(12):2405-10.
- [4]. Merims D, et al. Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson's disease. Parkinsonism Relat Disord. 2008;14(4):273-80. Epub 2007 Nov 7.
- [5]. Perez-Pardo P, et al. Additive Effects of Levodopa and a Neurorestorative Diet in a Mouse Model of Parkinson's Disease. Front Aging Neurosci. 2018 Aug 3;10:237.
- [6]. Park HJ, et al. Anti-allodynic effects of levodopa in neuropathic rats. Yonsei Med J. 2013 Mar 1;54(2):330-5.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA