

Product Data Sheet

L-Asparagine-¹⁵N₂ monohydrate

 $\begin{array}{lll} \textbf{Cat. No.:} & \text{HY-N0667S2} \\ \textbf{CAS No.:} & 287484-32-6 \\ \textbf{Molecular Formula:} & \text{C}_4\text{H}_{10}^{15}\text{N}_2\text{O}_4 \\ \end{array}$

Molecular Weight: 152.12

Target: Endogenous Metabolite

Pathway: Metabolic Enzyme/Protease

Storage: 4°C, protect from light, stored under nitrogen

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light, stored under

nitrogen)

$$H_2^{15}N$$
 OH

H_O_F

SOLVENT & SOLUBILITY

In Vitro

 $H_2O: 6.67 \text{ mg/mL}$ (43.85 mM; Need ultrasonic) $H_2O: 6.67 \text{ mg/mL}$ (43.85 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	6.5738 mL	32.8688 mL	65.7376 mL
	5 mM	1.3148 mL	6.5738 mL	13.1475 mL
	10 mM	0.6574 mL	3.2869 mL	6.5738 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	$ L-Asparagine-^{15}N_2\ (monohydrate)\ is\ the\ ^{15}N-labeled\ L-Asparagine.\ L-Asparagine\ ((-)-Asparagine)\ is\ a\ non-essential\ aminomial$	
	acid that is involved in the metabolic control of cell functions in nerve and brain tissue.	

Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

In Vitro

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com