

Product Data Sheet

Kavain

Cat. No.: HY-N2096

CAS No.: 3155-48-4Molecular Formula: $C_{14}H_{14}O_3$ Molecular Weight: 230.26

Target: GABA Receptor

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (217.15 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.3429 mL	21.7146 mL	43.4292 mL
	5 mM	0.8686 mL	4.3429 mL	8.6858 mL
	10 mM	0.4343 mL	2.1715 mL	4.3429 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (10.86 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ -Aminobutyric acid type A (GABAA) receptor ^[1] .
In Vitro	Two-electrode voltage clamp technique is used to characterize the functional properties of the major anxiolytic

Two-electrode voltage clamp technique is used to characterize the functional properties of the major anxiolytic kavalactone, Kavain at human recombinant $\alpha1\beta2$, $\beta2\gamma2L$, $\alphax\beta2\gamma2L$, $\alpha1\betax\gamma2L$ and $\alpha4\beta2\delta$ γ -Aminobutyric acid type A receptors (GABAARs) expressed in Xenopus oocytes. Kavain positively modulates all receptors regardless of the subunit composition, but the degree of enhancement is greater at $\alpha4\beta2\delta$ than at $\alpha1\beta2\gamma2L$ GABAARs. The modulatory effect of Kkavain is unaffected by flumazenil, indicating that Kavain does not enhance GABAARs via the classical benzodiazepine binding site. [1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

Page 2 of 2 www.MedChemExpress.com