Product Data Sheet

Jatrorrhizine chloride

Cat. No.: HY-N0740 CAS No.: 6681-15-8 Molecular Formula: $C_{20}H_{20}CINO_4$ Molecular Weight: 373.83

Target: Cholinesterase (ChE); 5-HT Receptor; Bacterial Pathway: Neuronal Signaling; GPCR/G Protein; Anti-infection

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 5 mg/mL (13.38 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6750 mL	13.3751 mL	26.7501 mL
	5 mM	0.5350 mL	2.6750 mL	5.3500 mL
	10 mM	0.2675 mL	1.3375 mL	2.6750 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.56 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.56 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Jatrorrhizine chloride is an alkaloid isolated from Coptis chinensis with neuroprotective, antimicrobial, antiplasmodial and antioxidant activities^[1]. Jatrorrhizine chloride is a potent and orally active inhibitor of AChE (IC₅₀=872 nM) over >115-fold selectivity for BuChE^[2]. Jatrorrhizine chloride reduces uptake of serotonin (5-HT) and norepinephrine (NE) via inhibition of uptake-2 transporters[3]. AChE IC₅₀ & Target

> Jatrorrhizine has antiplasmodial and antiamoebic activity, it against Plasmodium falciparum and E. histolytica with IC_{50} values of 3.15 and 82.7 μ M, respectively^[1].

> The hOCT2 (organic cation transporter 2), hOCT3, and PMAT (plasma membrane monoamine transporter) are capable of transporting monoamine neurotransmitters in the brain^[3].

In Vitro

Jatrorrhizine has the inhibitory potency of jatrorrhizine on 5-HT and NE uptake in hOCT2-, hOCT3-, and PMAT-transfected cells. Jatrorrhizine strongly inhibits PMAT-mediated MPP⁺ uptake with an IC₅₀ value of 1.05 μ M and reduces 5-HT and NE uptake mediated by hOCT2, hOCT3, and hPMAT with IC₅₀ values of 0.1-1 μ M (for OCT2 and OCT3) and 1-10 μ M (for PMAT)^[3]. Clearance of neurotransmitters released into the synaptic cleft is defined by two distinct processes. Uptake-1, the common target of current applied antidepressants, is comprised of the serotonin transporter (SERT), the "SERT", had a high affinity but low capacity to take up [3H]5-HT. Uptake-2 transporters are an important supplementary regulation system in monoamine clearancethought to be the "NET", has low affinity but high capacity to take up [³H]5-HT into brain slices. Jatrorrhizine significantly inhibited 5-HT and NE uptake in synaptosomes at 25 μ M and 50 μ M^[3].

In Vivo

Jatrorrhizine chloride (intraperitoneal injection; 5, 10, 20 mg/kg) can significantly reduce the duration of immobility when compared with vehicle control group in tail suspension test $(TST)^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male ICR albino mice ^[2]	
Dosage:	5, 10, 20 mg/kg	
Administration:	Intraperitoneal injection; 5, 10, 20 mg/kg	
Result:	Reduced immobility period in tail suspension test.	

REFERENCES

[1]. Sun S, et al. Jatrorrhizine reduces 5-HT and NE uptake via inhibition of uptake-2 transporters and produces antidepressant-like action in mice. Xenobiotica. 2019 Oct;49(10):1237-1243.

[2]. Xiaofei Jiang, et al. Synthesis and Biological Evaluation of Novel Jatrorrhizine Derivatives with Amino Groups Linked at the 3-Position as Inhibitors of Acetylcholinesterase. Research Article Volume 2017

[3]. C W Wright, et al. In vitro antiplasmodial, antiamoebic, and cytotoxic activities of some monomeric isoquinoline alkaloids. J Nat Prod. 2000 Dec;63(12):1638-40.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA