Inosine

Cat. No.:	HY-N0092		
CAS No.:	58-63-9		
Molecular Formula:	C ₁₀ H ₁₂ N ₄ O ₅		
Molecular Weight:	268.23		
Target:	Endogenous	s Metabol	ite; Adenosine Receptor
Pathway:	Metabolic Ei	nzyme/Pr	otease; GPCR/G Protein
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	2 years
		-20°C	1 year

SOLVENT & SOLUBILITY

In Vitro	DMSO : 100 mg/mL (372.81 mM; Need ultrasonic) H ₂ O : 10 mg/mL (37.28 mM; Need ultrasonic)					
	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
		1 mM	3.7281 mL	18.6407 mL	37.2814 mL	
		5 mM	0.7456 mL	3.7281 mL	7.4563 mL	
		10 mM	0.3728 mL	1.8641 mL	3.7281 mL	
	Please refer to the sol	ubility information to select the app	propriate solvent.			
In Vivo	1. Add each solvent one by one: PBS Solubility: 15.56 mg/mL (58.01 mM); Clear solution; Need ultrasonic					
	2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (9.32 mM); Clear solution					
	3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (9.32 mM); Clear solution					
	4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (9.32 mM); Clear solution					

BIOLOGICAL ACTIVITY

Description

Page 1 of 3

Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A_1 (A_1R) and A_{2A} ($A_{2A}R$) receptors^{[1][2][3]}.

он он

HO

Ο

NH

IC ₅₀ & Target	Human Endogenous Metabolite	A ₁ AR	A _{2A} R			
In Vitro	Inosine dose-dependently stimulates cAMP production mediated through the A _{2A} R ^[2] . Inosine dose-dependently induces hA _{2A} R-mediated ERK1/2 phosphorylation ^[2] . Inosine (100 μM; 24 hours) reduces oxidative stress in MES 23.5 cells cultured with astrocytes ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
In Vivo	Inosine can be used in animal m antinociceptive effect in mice ^[2] Induction of Hyperuricemia ^[5] Background Hyperuricaemia (HUA) oc increased uric acid forma	nodeling to construct high uric acid ccurs because of purine metabolis ation or reduced uric acid excretion	d models. Inosine (10-100 mg/kg; i.p.) exhibits m aberrations and is typically characterized by n. Inosineis a precursor of purine metabolism. Purine			
	nucleoside phosphorylase (PNP) and xanthine oxidase (XO) catalyse the conversion of inosine ^[6] . Inosinecan further catalyzed hypoxanthine, xanthine and uric acid (UA) ^[7] .					
	Specific Mmodeling Methods					
	Mice: Alb-CreERT2;Glut9lox/lox (LG9KO) &bulll 6-week-old Administration: 4 g/kg • ig • one time daily at 9:00-10:00 A.M. for 3 days					
	Note (1)Mice was gavaged o mg/ml in 0.5% carboxy gavage (day 3).(2)Bloo before the inosine trea animals were euthaniz Inosine gavage combin	ne time daily at 9:00–10:00 A.M. fo ymethylcellulose aqueous suspens d was collected from tail bleeds fo atment and 2 h, 6 h after the first g red.(3)Six weeks after inosine gava nes with HFD to cause acute renal	or 3 days (days 0, 1, and 2) with 4 g/kg inosine (500 sion) and euthanized 24 h after the last inosine or plasma urate and creatinine measurements avage, and 24 h after the last gavage before the age, plasma urate and creatinine had normalized. failure in LG9KO mice.			
	Modeling Record Molecular changes: Inosi transiently rose 2 and 6 h 3). In contrast, in HFD-fec Tissue changes: leads to	ne elevates plasma urate levels in after the first gavage and returne d LG9KO mice, inosine gavage indu tubular urate and uric acid crystal	LG9KO mice. In LG9KO mice fed chow, uricemia d to their basal level 24 h after the last gavage (day uced a much higher hyperuricemia at day 3 formation.			
	Correlated Product(s): Potass	sium oxonate (HY-17511)				
	MCE has not independently con	firmed the accuracy of these meth	ods. They are for reference only.			
	Animal Model:	Male/female C57BL/6 mice ^[2]				
	Dosage:	1 mg/kg, 10 mg/kg, 100 mg/kg				

Administration:	Intraperitoneal injection, 20 min before formalin treatment
Result:	Reduced flinching behaviour induced by formalin (2 %; 20 μ L; intraplantar injection).

CUSTOMER VALIDATION

- Talanta. 2023 Sep 6, 125171.
- Mol Ther Oncolytics. 28 August 2021.
- BMC Neurol. 2023 Dec 16;23(1):444.
- SSRN. 2022.
- Research Square Preprint. 2022 Feb.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Preitner F, et al. Urate-induced acute renal failure and chronic inflammation in liver-specific Glut9 knockout mice. Am J Physiol Renal Physiol. 2013 Sep 1;305(5):F786-95.

[2]. Tang DH, et al. Inosine induces acute hyperuricaemia in rhesus monkey (Macaca mulatta) as a potential disease animal model. Pharm Biol. 2021 Dec;59(1):175-182.

[3]. Zhao H, et al. Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol Res. 2022 Aug;182:106350.

[4]. Filipe Marques Gonçalves, et al. Signaling pathways underlying the antidepressant-like effect of inosine in mice. Purinergic Signal. 2017 Jun; 13(2): 203-214.

[5]. Ajith A. Welihinda, et al. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal. 2016 Jun; 28(6): 552-560.

[6]. Francisney Pinto Nascimento, et al. Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol. 2015;51(3):1368-78.

[7]. Sara Cipriani, et al. Protection by inosine in a cellular model of Parkinson's disease. Neuroscience. 2014 Aug 22; 274: 242-249.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA