Product Data Sheet

Hypoxanthine- $^{13}C_5$, $^{15}N_4$

Cat. No.: HY-N0091S

CAS No.: 1987883-25-9

Molecular Formula: ¹³C₅H₄¹⁵N₄O

Molecular Weight: 145.05

Target: Endogenous Metabolite; Isotope-Labeled Compounds

Pathway: Metabolic Enzyme/Protease; Others

Storage: 4°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 10 mg/mL (68.94 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	6.8942 mL	34.4709 mL	68.9417 mL
	5 mM	1.3788 mL	6.8942 mL	13.7883 mL
	10 mM	0.6894 mL	3.4471 mL	6.8942 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Hypoxanthine- 13 C $_5$, 15 N $_4$ is a 15 N-labeled and 13 C-labled Dansyl chloride.		
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[75] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

REFERENCES

 $[1]. Russak \, EM, et al. \, Impact of \, Deuterium \, Substitution \, on \, the \, Pharmacokinetics \, of \, Pharmaceuticals. \, Ann \, Pharmacother. \, 2019; 53(2): 211-245.$

[2]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-245.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com