Higenamine hydrochloride

Cat. No.:	HY-N2037A	
CAS No.:	11041-94-4	
Molecular Formula:	C ₁₆ H ₁₈ ClNO ₃	
Molecular Weight:	307.77	HO. A L
Target:	MDM-2/p53; ROS Kinase; Apoptosis; MAP3K	NH
Pathway:	Apoptosis; Protein Tyrosine Kinase/RTK; MAPK/ERK Pathway	но
Storage:	4°C, sealed storage, away from moisture and light * In solvent : -80°C, 2 years; -20°C, 1 year (sealed storage, away from moisture and light)	H–CI

SOLVENT & SOLUBILITY

		Solvent Mass Concentration	1 mg	5 mg	10 mg
	Preparing Stock Solutions	1 mM	3.2492 mL	16.2459 mL	32.4918 mL
		5 mM	0.6498 mL	3.2492 mL	6.4984 mL
		10 mM	0.3249 mL	1.6246 mL	3.2492 mL
ı Vivo	1. Add each solvent c	ubility information to select the ap one by one: PBS 'mL (324.92 mM); Clear solution; Ne			
		2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.76 mM); Clear solution			
		one by one: 10% DMSO >> 90% (20 ng/mL (6.76 mM); Clear solution	% SBE-β-CD in saline)		

BIOLOGICAL ACTIV	ИТҮ	
Description	hydrochloride has anti-inflam Apoptosis through ROS-media deprivation. Higenamine can p	a selective LSD1 inhibitor (IC ₅₀ =1.47 μM) that can be isolated from aconite. Higenamine matory and antibacterial activity. Higenamine (Norcoclaurine) can attenuate IL-1β-induced ated PI3K/Akt signaling pathway. Higenamine hydrochloride protects brain cells from oxygen promote bone formation in osteoporosis through the SMAD2/3 pathway. Higenamine study cancer, inflammation, cardiorenal syndrome and other diseases ^{[1][2][3][4][5][6]} .
IC₅₀ & Target	β adrenergic receptor	ASK1

In Vitro

Higenamine hydrochloride (3-100 μ M; 72 h) can inhibit the differentiation of MV4-11 and MOLM-13 cells by inhibiting the activity of LSD1^[1].

Higenamine hydrochloride (1-100 μ M; 8 h) can enhance the activity of HO-1 in C6 cells and protect brain cells from cell hypoxia damage ^[2].

Higenamine hydrochloride (10-50 μ M; 8 h) can inhibit apoptosis in C6 cells^[2].

Higenamine hydrochloride (10-40 μM; 24 h) can inhibit the production of IL-1β-induced ROS and activate the ROS-mediated PI3K/Akt signaling pathway, which has anti-apoptotic activity in HNPCs^[3].

Higenamine hydrochloride (0.08-250 μ M; 0.5-24 h) promotes phosphorylation of SMAD2/3 in a time- and dose-dependent manner in BMSCs^[6].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	MV4-11, MOLM-13
Concentration:	3 μΜ, 10 μΜ, 30 μΜ, 100 μΜ
Incubation Time:	72 h
Result:	Could up-regulate the expression levels of LSD1 substrate H3K4me1 and H3K4me2 in a dose-dependent manner, but did not affect the expression levels of H3K4me3, H3 and LSD1. Promoted P53 expression in a dose-dependent manner.

Western Blot Analysis^[2]

Cell Line:	C6
Concentration:	1 μΜ, 5μΜ, 10 μΜ, 50 μΜ,100 μΜ
Incubation Time:	8 h
Result:	Increased HO-1 expression in a concentration-dependent manner under hypoxia and normoxia conditions.

Real Time qPCR^[1]

Cell Line:	MV4-11, MOLM-13
Concentration:	3 μΜ, 10 μΜ, 30 μΜ, 100 μΜ
Incubation Time:	72 h
Result:	Significantly down-regulated the expression levels of HoxA9 and Meis1 in leukemia cells in a dose-dependent manner.

In Vivo

Higenamine hydrochloride (10 mg/kg; Intraperitoneal injection; Single dose) can significantly reduce the inflammation and infarct size of cerebral ischemic injury caused by middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats^[2]. Higenamine hydrochloride (0.5-4.5 mg/kg; Single dose) improves cardiac and renal function in rats with cardio-renal syndrome (CRS) and alleviates cardiac and renal fibrosis by targeting ASK1/MAPK (ERK, P38)/NF-kB signaling pathway in Sprague-Dawley rats^[4].

Higenamine hydrochloride (20 mg/kg-30 mg/kg; Intraperitoneal injection; Once daily for 60 days) promotes bone formation and prevents accelerated bone loss in SAMP6 mice^[6].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:

Spontaneous osteoporosis SAMP6 mice model^[6]

Dosage:	10 mg/kg, 20 mg/kg
Administration:	Intraperitoneal injection (i.p.);Once daily for 60 days
Result:	Significantly increased the expression of P1NP and OCN (P1NP and OCN are markers of bone formation).

CUSTOMER VALIDATION

- Nutrients. 2024 May 22.
- J Pharmaceut Biomed. 2020, 113870.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Fang Y, et al. Discovery of higenamine as a potent, selective and cellular active natural LSD1 inhibitor for MLL-rearranged leukemia therapy. Bioorg Chem. 2021 Apr;109:104723.

[2]. Ha YM, et al. Higenamine reduces HMGB1 during hypoxia-induced brain injury by induction of heme oxygenase-1 through PI3K/Akt/Nrf-2 signal pathways. Apoptosis. 2012 May;17(5):463-74.

[3]. Zhu X, et al. Higenamine mitigates interleukin-1β-induced human nucleus pulposus cell apoptosis by ROS-mediated PI3K/Akt signaling. Mol Cell Biochem. 2021 Nov;476(11):3889-3897.

[4]. Deng T, et al. Higenamine Improves Cardiac and Renal Fibrosis in Rats With Cardiorenal Syndrome via ASK1 Signaling Pathway. J Cardiovasc Pharmacol. 2020 Jun;75(6):535-544.

[5]. Erasto, Paul et al. Evaluation of Antimycobacterial Activity of Higenamine Using Galleria mellonella as an In Vivo Infection Model. Natural products and bioprospecting vol. 8,1 (2018): 63-69.

[6]. Dong, Hui et al. Higenamine Promotes Osteogenesis Via IQGAP1/SMAD4 Signaling Pathway and Prevents Age- and Estrogen-Dependent Bone Loss in Mice. Journal of bone and mineral research vol. 38,5 (2023): 775-791.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA