Glaucocalyxin B

Cat. No.:HY-N2113CAS No.:80508-81-2Molecular Formula: $C_{22}H_{30}O_5$ Molecular Weight:374.47Target:AutophagyPathway:Autophagy

Storage: Powder -20°C 3 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (267.04 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6704 mL	13.3522 mL	26.7044 mL
	5 mM	0.5341 mL	2.6704 mL	5.3409 mL
	10 mM	0.2670 mL	1.3352 mL	2.6704 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.25 mg/mL (3.34 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 1.25 mg/mL (3.34 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.25 mg/mL (3.34 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Glaucocalyxin B is an ent kaurane diterpenoid isolated from the Chinese traditional medicine Rabdosia japonica with anticancer and antitumor activity; decreases the growth of HL-60 cells with an IC $_{50}$ of approximately 5.86 μ M at 24 h.
IC ₅₀ & Target	IC50: $5.86\mu\text{M}$ (HL-60 cell Growth) $^{[1]}$
In Vitro	Glaucocalyxin A (GlnA) and (GlnB) dose-dependently decrease the growth of HL-60 cells with an IC $_{50}$ of approximately 6.15 and 5.86 μ M at 24 h, respectively. Both Gln A and B could induce apoptosis, G2/M-phase cycle arrest, DNA damage and the accumulation of reactive oxygen species (ROS) in HL-60 cells ^[1] . GlnB inhibits the proliferation of human cervical cancer cells

in vitro through the induction of apoptosis and autophagy, which may be mediated by the phosphatidylinositol 4,5 bisphosphate 3 kinase/Akt signaling pathway. Treatment with GlnB inhibits the proliferation of HeLa and SiHa cervical cancer cell lines in a dose dependent manner. GlnB increases the apoptotic cell population of and enhanced poly (ADP ribose) polymerase 1 cleavage. GlnB also induces increased light chain 3 II/I protein cleavage, indicating the induction of autophagy. GlnB treatment increases the expression of phosphatase and tensin homolog and decreases the expression of phosphorylated protein kinase $B^{[2]}$. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO), tumor necrosis factor (TNF)- α , interleukin (IL)-1 β , cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in the lipopolysaccharide (LPS)-activated microglia cells^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [3]

The microglia cells viability is assessed by MTT assay. Cells are seeded in 96-well plates at the density of 5×10^4 cells/well. The cell culture supernatant is discarded after treatment with various agents, and then 30 μ L of MTT (0.5 mg/mL) solution is added into each well. After incubation for 4 h at 37 °C, 100 μ L of DMSO is added into each well to dissolve the formazan dye, and then the absorbance of solubilized formazan is measured by microplate reader^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Yang WH, et al. Glaucocalyxin A and B-induced cell death is related to GSH perturbation in human leukemia HL-60 cells. Anticancer Agents Med Chem. 2013 Oct;13(8):1280-90.

[2]. Pan Y, et al. Glaucocalyxin B induces apoptosis and autophagy in human cervical cancer cells. Mol Med Rep. 2016 Aug;14(2):1751-5.

[3]. Gan P, et al. Anti-inflammatory effects of glaucocalyxin B in microglia cells. J Pharmacol Sci. 2015 May;128(1):35-46.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com