Geniposide

Cat. No.:	HY-N0009		
CAS No.:	24512-63-8		
Molecular Formula:	C ₁₇ H ₂₄ O ₁₀		
Molecular Weight:	388.37		
Target:	Amyloid-β; Influenza Virus		
Pathway:	Neuronal Signaling; Anti-infection		
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	1 year
		-20°C	6 months

SOLVENT & SOLUBILITY

0,	0, 1	DMSO : 100 mg/mL (257.49 mM; Need ultrasonic) H ₂ O : 50 mg/mL (128.74 mM; Need ultrasonic)					
		Solvent Mass Concentration	1 mg	5 mg	10 mg		
		1 mM	2.5749 mL	12.8743 mL	25.7486 mL		
		5 mM	0.5150 mL	2.5749 mL	5.1497 mL		
		10 mM	0.2575 mL	1.2874 mL	2.5749 mL		
	Please refer to the so	lubility information to select the app	propriate solvent.	1			
In Vivo		1. Add each solvent one by one: PBS Solubility: 100 mg/mL (257.49 mM); Clear solution; Need ultrasonic and warming and heat to 60°C					
		2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.75 mg/mL (7.08 mM); Clear solution					
		3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.75 mg/mL (7.08 mM); Clear solution					
		 Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.75 mg/mL (7.08 mM); Clear solution 					

BIOLOGICAL ACTIV	ТТҮ
Description	Geniposide is an iridoid glucoside extracted from Gardenia jasminoidesEllis fruits; exhibits a varity of biological activities such as anti-diabetic, antioxidative, antiproliferative and neuroprotective activities.
In Vitro	Geniposide exhibits a variety of activities, such as on antithrombosis, anti-inflammation, anti-diabetes, anti-atherosclerosis,

0

O

он он

ΗÓ

HO

H'

	antidepression, healing Alzheimer's disease (AD), anti-hypertension, toxicology, and untoward reaction are summarized ^[1] . Geniposide markedly declines the production of IL-8, IL-1β and MCP-1 in OGD-induced brain microvascular endothelial cells, the expression of P2Y14 receptor is significantly down-regulated, the phosphorylation of RAF-1, MEK1/2, ERK1/2 are suppressed ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Geniposide (200 and 400 mg/kg) significantly decreases the blood glucose, insulin and TG levels in diabetic mice in a dose- dependent manner. This compound also decreases the expression of GP and G6Pase at mRNA and immunoreactive protein levels, as well as enzyme activity ^[3] . Geniposide (20.0, 40.0, or 80 mg/kg) significantly reverses the excessive, alcohol-induced elevation in both serum ALT/AST and hepatic LPO levels. Geniposide upregulates the expression of heme oxygenase-1 (HO- 1) to attenuate the cell apoptosis induced by 3-morpholinosydnonimine hydrochloride (SIN-1) in primary cultured hippocampal neurons ^[4] . Geniposide inhibits photochemistry-induced thromboembolism model in vivo. Geniposide are very effective depressants on NF-κB by interrupting IκB degradation ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL	
Cell Assay ^[2]	The third passages of brain microvascular endothelial cells (BMECs) are used for the experiment. The BMECs are divided into four groups: (1)normal control group: the normal cultured BMECs without treatment; (2)OGD group: the BMECs injured by OGD according to the above method; (3) geniposide group: the OGD-injured BMECs treated with 33.2 µg/mL geniposide for 6 h; (4)PTX group: the OGD-injured BMECs administrated with 100 ng/mL PTX. PTX, known as an inhibitor of G _i -coupled receptor is used to assess the activation of P2Y ₁₄ receptor induced by OGD in this experiment ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Animal Administration ^[3]	Mice: Type 2 diabetic mice, induced by a high-fat diet and streptozotocin injection, are treated with or without geniposide for 2 weeks. Blood glucose levels are monitored by a glucometer. Insulin concentrations are analyzed by the ELISA method. Total cholesterol (TC) and triglyceride (TG) levels are measured using Labassay kits. Activities of hepatic GP and G6Pase are measured by glucose-6-phosphate dehydrogenase-coupled reaction. Real-time RT-PCR and Western blotting are used to determine the mRNA and protein levels of both enzymes ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Biomed Pharmacother. November 2022, 113829.
- Phytother Res. 2022 Dec 14.
- Gene. 2023 Jun 11;147564.
- Exp Ther Med. August 31, 2021.
- J Orthop Surg Res. 2024 Mar 11;19(1):179.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Liu H, et al. Fructus Gardenia (Gardenia jasminoides J. Ellis) phytochemistry, pharmacology of cardiovascular, and safety with the perspective of new drugs development. J Asian Nat Prod Res. 2013;15(1):94-110.

[2]. Li F, et al. Geniposide attenuates inflammatory response by suppressing P2Y14 receptor and downstream ERK1/2 signaling pathway in oxygen and glucose deprivationinduced brain microvascular endothelial cells. J Ethnopharmacol. 2016 Jun 5;185:77-86. [3]. Wu SY, et al. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharmacol Sin. 2009 Feb;30(2):202-8.

[4]. Wang J, et al. Geniposide protects against acute alcohol-induced liver injury in mice via up-regulating the expression of the main antioxidant enzymes. Can J Physiol Pharmacol. 2015 Apr;93(4):261-7.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA