Product Data Sheet

Farrerol

Cat. No.: HY-N0344

CAS No.: 24211-30-1

Molecular Formula: $C_{17}H_{16}O_5$ Molecular Weight: 300.31

Target: Others

Pathway: Others

Storage: 4°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 125 mg/mL (416.24 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.3299 mL	16.6495 mL	33.2989 mL
	5 mM	0.6660 mL	3.3299 mL	6.6598 mL
	10 mM	0.3330 mL	1.6649 mL	3.3299 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 2.08 mg/mL (6.93 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.08 mg/mL (6.93 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.93 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects ^{[1][2][3][4][5][6]} .
In Vitro	Farrerol observably reduces the production of inflammatory mediators including IL-1 β , IL-6, TNF- α , COX-2, and iNOS in LPS-induced RAW264.7 cells via suppressing AKT, ERK1/2, JNK1/2, and NF- κ B p65 phosphorylation ^[1] . Farrerol attenuates β -amyloid-induced oxidative stress and inflammation through Nrf2/Keap1 pathway in a microglia cell line ^[2] . Farrerol inhibits angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway ^[3] .

	Farrerol overcomes the invasiveness of lung squamous cell carcinoma cells by regulating the expression of inducers of epithelial mesenchymal transition $^{[4]}$. Farrerol ameliorates acetaminophen-induced hepatotoxicity via activation of Nrf2 and autophagy $^{[6]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Farrerol protects dopaminergic neurons in a rat model of lipopolysaccharide-induced Parkinson's disease by suppressing the activation of the AKT and NF-kB signaling pathways ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Antioxidants. 2021, 10(6), 863.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Ran X, et al. Farrerol Ameliorates TNBS-Induced Colonic Inflammation by Inhibiting ERK1/2, JNK1/2, and NF-kB Signaling Pathway. Int J Mol Sci. 2018 Jul 13;19(7).
- [2]. Cui B, et al. Farrerol attenuates β-amyloid-induced oxidative stress and inflammation through Nrf2/Keap1 pathway in a microglia cell line. Biomed Pharmacother. 2019 Jan;109:112-119.
- [3]. Dai F, et al. Farrerol inhibited angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway. Phytomedicine. 2016 Jun 15;23(7):686-93.
- [4]. Li B, et al. Farrerol overcomes the invasiveness of lung squamous cell carcinoma cells by regulating the expression of inducers of epithelial mesenchymal transition. Microb Pathog. 2019 Jun;131:277.
- [5]. Li Y, et al. Farrerol protects dopaminergic neurons in a rat model of lipopolysaccharide-induced Parkinson's disease by suppressing the activation of the AKT and NF-κB signaling pathways. Int Immunopharmacol. 2019 Oct;75:105739.
- [6]. Wang L, et al. Farrerol Ameliorates APAP-induced Hepatotoxicity via Activation of Nrf2 and Autophagy. Int J Biol Sci. 2019 Jan 29;15(4):788-799.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax:

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA