

Echinatin

Cat. No.: HY-N0269 CAS No.: 34221-41-5 Molecular Formula: $C_{16}H_{14}O_4$ Molecular Weight: 270.28

Target: Apoptosis; Autophagy; NOD-like Receptor (NLR) Pathway: Apoptosis; Autophagy; Immunology/Inflammation

Storage: 4°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (462.48 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	3.6999 mL	18.4993 mL	36.9987 mL	
	5 mM	0.7400 mL	3.6999 mL	7.3997 mL	
	10 mM	0.3700 mL	1.8499 mL	3.6999 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.17 mg/mL (8.03 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (7.70 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Echinatin is a chalcone isolated from the Chinese herbal medicine Gancao with hepatoprotective and anti-inflammatory effects ^[1] . Echinatin can be quickly absorbed and eliminated and extensively distributed with an absolute bioavailability of approximately 6.81% in Rat ^[2] .
In Vitro	Echinatin (0-40 μM, 60 min) inhibits Nigericin induced NLRP3 inflammasome activation by binding to HSP90 and suppressing its ATPase activity in LPS-primed BMDMs ^[2] . Echinatin (0-40 μM, 1-5 days) induces apoptosis and autophagy, and inhibits cell proliferation, migration, invasion in ESCC (KYSE30 and KYSE270 cells) ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis ^[1]

Cell Line:	LPS-primed BMDMs		
Concentration:	0-40 μΜ		
Incubation Time:	60 min		
Result:	Reduced cleaved caspase-1 and production of IL-1β.		
Immunofluorescence ^[4]			
Cell Line:	KYSE30 and KYSE270 cells		
Concentration:	40 μM		
Incubation Time:	2 days		
Result:	Induced cellular LC3 puncta accumulation.		

In Vivo

Echinatin (20 and 40 mg/kg, i.p.) inhibits LPS-induced septic shock in mice by inhibiting NLRP3 inflammasome activation^[2]. Echinatin (20-80 mg/kg, i.p.) shows cardioprotective effect, and relieves I/R-Induced Myocardial Injury in rats^[3]. Echinatin (20 and 50 mg/kg, p.o.) inhibits tumor growth and inhibits the AKT/mTOR pathway of KYSE270-derived tumor mice xenografts^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	LPS-induced septic shock in mice $^{[1]}$
Dosage:	20 and 40 mg/kg
Administration:	i.p.
Result:	Inhibited LPS-induced IL-1 β and TNF- α production. Reduced the proportion and the number of neutrophils in peritoneal lavage cells from mice.

CUSTOMER VALIDATION

- Int Immunopharmacol. 2024 Jun 7:136:112372.
- Front Cell Dev Biol. 2021 Jun 11;9:684393.
- SSRN. 2024 Mar 8.

See more customer validations on www.MedChemExpress.com

REFERENCES

- $[1]. \ Xu\ G, et\ al.\ Echinatin\ effectively\ protects\ against\ NLRP3\ inflammasome-driven\ diseases\ by\ targeting\ HSP90.\ JCI\ Insight.\ 2021\ Jan\ 25;6(2):e134601.$
- [2]. Niu J, et al. Cardioprotective Effect of Echinatin Against Ischemia/Reperfusion Injury: Involvement of Hippo/Yes-Associated Protein Signaling. Front Pharmacol. 2021 Jan 11;11:593225.
- [3]. Hong P, et al. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis. 2020 Jul 13;11(7):524.

Page 2 of 3

4]. Liang M, et al. Antioxidant Mechanisms of Echinatin and Licochalcone A. Molecules. 2018 Dec 20;24(1).						
			edical applications. For research use			
	Tel: 609-228-6898 Address: 1	Fax: 609-228-5909 Deer Park Dr, Suite Q, Monm	E-mail: tech@MedChemExpress outh Junction, NJ 08852, USA	.com		

Page 3 of 3 www.MedChemExpress.com