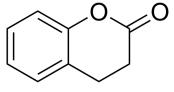
Screening Libraries

Product Data Sheet

Dihydrocoumarin

Cat. No.: HY-N1926 CAS No.: 119-84-6 Molecular Formula: $C_9H_8O_2$ Molecular Weight: 148.16 Target: Sirtuin


Pathway: Cell Cycle/DNA Damage; Epigenetics

Pure form -20°C Storage: 3 years

2 years

-80°C In solvent 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (674.95 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	6.7495 mL	33.7473 mL	67.4946 mL
	5 mM	1.3499 mL	6.7495 mL	13.4989 mL
	10 mM	0.6749 mL	3.3747 mL	6.7495 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (16.87 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (16.87 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (16.87 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC₅₀s of 208 μ M and 295 μ M, respectively^[1].

hSIRT1 IC₅₀ & Target hSIRT2 $208~\mu\text{M}~(\text{IC}_{50})$ $295 \,\mu\text{M} \,(\text{IC}_{50})$

In Vitro Dihydrocoumarin induces a concentration-dependent inhibition of SIRT1 (IC $_{50}$ of 208 μ M) in an in vitro enzymatic assay. A decrease in SIRT1 deacetylase activity is observed even at micromolar doses (85 \pm 5.8 and 73 \pm 13.7% activity at 1.6 μ M and 8 μ M, respectively). The microtubule SIRT2 deacetylase is also inhibited with a similar dose dependency (IC $_{50}$ of 295 μ M)^[1]. Dihydrocoumarin (1-5 mM) increases cytotoxicity in the TK6 cell line in a dose-dependent manner following a 24-h exposure. Dihydrocoumarin (1-5 mM) increases apoptosis in a dose-dependent manner in the TK6 cell line at the 6-h time point. A 5-mM dose of Dihydrocoumarin increases apoptosis at the 6-h time point in the TK6 cell line^[1]. Dihydrocoumarin (1-5 mM) increases p53 lysine 373 and 382 acetylation in a dose-dependent manner in the TK6 cell line following a 24-h exposure period^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Olaharski AJ, et al. The flavoring agent Dihydrocoumarin reverses epigenetic silencing and inhibits sirtuindeacetylases. PLoS Genet. 2005 Dec;1(6):e77.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com