DRAQ5

MedChemExpress

Cat. No.:	HY-D1742
CAS No.:	254098-36-7
Molecular Weight:	412.5
Target:	Fluorescent Dye; DNA Stain
Pathway:	Others; Cell Cycle/DNA Damage
Storage:	4°C, protect from light * In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

DRAQ5

Description DRAQ5 is a novel cell permeant and far red-fluorescing DNA probe. DRAQ5 excites at a wavelength of 647 nm, close to the E and produces a fluorescence spectrum extending from 665 nm out to beyond 780 nm wavelengths. DRAQ5 fluorescence reflects cellular DNA content. DRAQ5 can be used in combination with FITC and RPE-labelled antibodies, without the need for fluorescence compensation ^[1] .	BIOLOGICAL ACTIVITY		
reflects cellular DNA content. DRAQ5 can be used in combination with FITC and RPE-labelled antibodies, without the need	a novel cell permeant and far red-fluorescing DNA probe. DRAQ5 excites at a wavelength of 647 nm, close to the Ex,		
	llular DNA content. DRAQ5 can be used in combination with FITC and RPE-labelled antibodies, without the need		
 In Vitro Mammalian cell in full culture medium staining methods^[2]: (1) Cell planking: Digestive separation of cells and resuspend in complete medium to a concentration of 2-4 × 10⁵ cells/ml. Note: Attached cell cultures (e.g., coverslip cultures or chambered wells) can be stained in a 1-2-ml staining volume overlayering a 4-cm² surface area. (2) Prepare staining solution: Add 4 µl of 5 mM DRAQ5 acidified stock per ml culture medium (20 µM final). Note: Nuclear discrimination is achievable at 2.5 to 5 µM, and it is unlikely that concentrations >30 µM would be required. (3) Fluorescence staining: Incubate 5 to 15 min at 37°C. Note: Overstaining cannot occur. (4)Wash (optional): Centrifuge cells 3 to 5 min at 800 × g, 37°C. Discard supernatant and resuspend in complete medium wit 10 mM HEPES (HY-D0857) at 4 × 10⁵ cells/ml. (5) For flow cytometry: Use conventional pulse analysis for doublet discrimination and analyze parameters using appropriate software. (6) For laser scanning microscopy: Collect fluorescence images using a 695 nm long-pass filter. Fixed cells:Use 4% paraformaldehyde in PBS for 30 min with resuspension in an aqueous buffer (e.g., PBS). (2) Fluorescence staining: similar concentrations of dye and similar incubation conditions can be used as for live cells. MCE has not independently confirmed the accuracy of these methods. They are for reference only. 	In king: Digestive separation of cells and resuspend in complete medium to a concentration of 2-4 × 10 ⁵ cells/ml. ched cell cultures (e.g., coverslip cultures or chambered wells) can be stained in a 1-2-ml staining volume ing a 4-cm ² surface area. e staining solution: Add 4 μ l of 5 mM DRAQ5 acidified stock per ml culture medium (20 μ M final). lear discrimination is achievable at 2.5 to 5 μ M, and it is unlikely that concentrations >30 μ M would be required. accence staining: Incubate 5 to 15 min at 37°C. rstaining cannot occur. optional): Centrifuge cells 3 to 5 min at 800 × g, 37°C. Discard supernatant and resuspend in complete medium with PES (HY-D0857) at 4 × 10 ⁵ cells/ml. w cytometry: Use conventional pulse analysis for doublet discrimination and analyze parameters using te software. er scanning microscopy: Collect fluorescence images using a 695 nm long-pass filter. • staining methods ^[2] : ells:Use 4% paraformaldehyde in PBS for 30 min with resuspension in an aqueous buffer (e.g., PBS). scence staining: similar concentrations of dye and similar incubation conditions can be used as for live cells.		

REFERENCES

[1]. Smith PJ, et al. A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry. J Immunol Methods. 1999 Oct 29;229(1-2):131-9.

[2]. Smith PJ, et al. DRAQ5 labeling of nuclear DNA in live and fixed cells. Curr Protoc Cytom. 2004 May; Chapter 7:Unit 7.25.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA