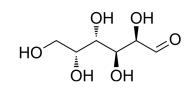
D-Galactose


Cat. No.:	HY-N0210		
CAS No.:	59-23-4		
Molecular Formula:	$C_6H_{12}O_6$		
Molecular Weight:	180.16		
Target:	Endogenou	s Metabo	lite
Pathway:	Metabolic E	nzyme/P	rotease
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	6 months
		-20°C	1 month

SOLVENT & SOLUBILITY

		Solvent Mass Concentration	1 mg	5 mg	10 mg	
	Preparing Stock Solutions	1 mM	5.5506 mL	27.7531 mL	55.5062 mL	
		5 mM	1.1101 mL	5.5506 mL	11.1012 mL	
		10 mM	0.5551 mL	2.7753 mL	5.5506 mL	
n Vivo	1. Add each solvent c	ubility information to select the ap one by one: PBS (mL (555.06 mM); Clear solution; Ne	•			
		2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (13.88 mM); Clear solution				
		one by one: 10% DMSO >> 90% (20 g/mL (13.88 mM); Clear solution	% SBE-β-CD in saline	1		
		one by one: 10% DMSO >> 90% cor g/mL (13.88 mM); Clear solution	n oil			

BIOLOGICAL ACTIV	ТТҮ
Description	D-Galactose is a natural aldohexose and C-4 epimer of glucose.
IC ₅₀ & Target	Human Endogenous Metabolite

Product Data Sheet

In Vitro	pathway. Two anomers of d for induction of UDP-galacto	ne survival and virulence of bacteria. In Escherichia coli galactose is utilized by the Leloir -galactose are used for different purposes, α-d-galactose as a carbon source and β-d-galactose ose synthesis for biosynthetic glycosylation ^[1] . confirmed the accuracy of these methods. They are for reference only.
In Vivo	galactose exposure induces neuron migration in mice, as useful model for studying th given by oral route causes or impairments is observed in t in spatial memory in the rad aging and cataracts modelir amine groups resulting in th AGEs give rise to age-related Galactose induction ^{[4][5][6][7]} (1) Model animal: female/ma Subacute Aging Model: 50, 1 Cataract Model: 200 mg/kg/d (2) Model animals: Albino-W Subacute Aging Model: 300 n Cataract Model: 15 g/kg, injection Induction of subacute aging Background D-galactose changes the accumulation of a age-related disorders	ale C57BL/6J mice 00 and 200 mg/kg/day, subcutaneous injection (s.c.), 8 weeks day, subcutaneous injection (s.c.), 8 weeks istar rats (120-130 g) mg/ml/kg, injected intraperitoneally (i.p.), 7 day ected intraperitoneally (i.p.), twice daily, 30 day model ^[5] the structure of protein and peptide by reacting with their free amine groups resulting in advanced glycation end (AGE) products through non-enzymatic glycation. AGEs give rise to 5. Rats and mice are generally used as animal models.
	Note Modeling Record Body quality changes Induced locomotor in Correlated Product(s):	
	Animal Model:	female C57BL/6J mice ^[5]

Dosage:	50, 100 and 200 mg/kg/day, 8 weeks
Administration:	subcutaneous injection (s.c.)
Result:	Impaired spatial learning and memory of mice at a dose of 100 mg/kg. Induced locomotor impairment in LAT in a dose-dependent manner especially in the second day.

CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2022 Sep 1;7(1):303.
- PLoS Biol. 2018 Oct 18;16(10):e2006483.
- J Cachexia Sarcopenia Muscle. 2024 May 16.
- Antioxidants (Basel). 2024 Jan 31;13(2):183.
- Cells. 2022, 11(20), 3270.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Haifeng Wei, et al. Behavioural study of the Haifeng Wei, et al. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav Brain Res. 2005, 157, 22.

[2]. Saida Haider, et al. A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sci. 2015.

[3]. Wenjing Feng, et al. Alginate Oligosaccharide Prevents against D-galactose-mediated Cataract in C57BL/6J Mice via Regulating Oxidative Stress and Antioxidant System. Curr Eye Res. 2021, 46, 6.

[4]. Lei Zhong, et al. Characterization of an i.p. D-galactose-induced cataract model in rats. J Pharmacol Toxicol Methods. 2021.

[5]. Csiszovszki Z, et al. Structure and function of the D-galactose network in enterobacteria. MBio. 2011 Jun 28;2(4):e00053-11.

[6]. Cui X, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidativedamage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res. 2006 Aug 15;84(3):647-54.

[7]. Budni J, et al. Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats. Behav Brain Res. 2016 Apr 1;302:35-43.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA