Proteins

Product Data Sheet

Canagliflozin hemihydrate

Cat. No.: HY-I0383 CAS No.: 928672-86-0 Molecular Formula: $C_{24}H_{26}FO_{5.5}S$ Molecular Weight: 453.52 SGLT Target:

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C 3 years 2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

DMSO : ≥ 100 mg/mL (220.50 mM) In Vitro

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2050 mL	11.0249 mL	22.0497 mL
	5 mM	0.4410 mL	2.2050 mL	4.4099 mL
	10 mM	0.2205 mL	1.1025 mL	2.2050 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.51 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.51 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.51 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Canagliflozin hemihydrate (JNJ28431754 hemihydrate) is a selective SGLT2 inhibitor with IC ₅₀ s of 2 nM, 3.7 nM, and 4.4 nM
	for mSGLT2, rSGLT2, and hSGLT2 in CHOK cells, respectively ^[1] .

IC₅₀ & Target SGLT2

In Vitro Canagliflozin inhibits Na⁺-dependent ¹⁴C-AMG uptake in CHO-hSGLT2 cells, with an IC₅₀ of 4.4±1.2 nM. Similar IC₅₀ values are obtained in CHO-rSGLT2 and CHO-mSGLT2 cells (IC $_{50}$ = 3.7 and 2.0 nM for rat and mouse SGLT2, respectively). Canagliflozin inhibits 14 C-AMG uptake in CHO-hSGLT1 and mSGLT1 cells with IC $_{50}$ of 684±159 nM and >1,000 nM, respectively [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Canagliflozin (30 mg/kg treatment for 4 weeks) reduces blood glucose (BG) levels, respiratory exchange ratio, and body weight gain in DIO mice^[1].

Canagliflozin (3 mg/kg for 3 weeks) increases urinary glucose excretion (UGE) with no significant change in total food intake compared with that in vehicle-treated rats, leading to a decrease in body weight In ZF rats^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Diet-induced obese, insulin resistantmice (DIO) $Mice^{[1]}$	
Dosage:	30 mg/kg	
Administration:	Oral gavage; daily; 4 weeks	
Result:	Reduced BG levels, respiratory exchange ratio, and body weight gain.	
Animal Model:	Male Zucker fatty (ZF) obese, insulin resistant rats ^[1]	
Dosage:	3 mg/kg	
Administration:	Oral gavage; daily; 3 weeks	
Result:	UGE was increased with no significant change in total food intake compared with that in vehicle-treated rats, leading to a decrease in body weight.	

CUSTOMER VALIDATION

- Nature. 2018 Aug;560(7719):499-503.
- Nat Cell Biol. 2022 May 30.
- Mol Cell. 2020 Oct 1;80(1):87-101.e5.
- Cardiovasc Res. 2023 Jul 31;cvad119.
- Cardiovasc Res. 02 November 2020.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Liang Y, et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS One. 2012;7(2):e30555.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA