

Product Data Sheet

Bilobalide

Cat. No.: HY-N0076

CAS No.: 33570-04-6

Molecular Formula: $C_{15}H_{18}O_8$ Molecular Weight: 326.3

Target: Autophagy; Endogenous Metabolite; Apoptosis

Pathway: Autophagy; Metabolic Enzyme/Protease; Apoptosis

Storage: Powder -20°C

4°C 2 years -80°C 2 years

3 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (306.47 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0647 mL	15.3233 mL	30.6466 mL
	5 mM	0.6129 mL	3.0647 mL	6.1293 mL
	10 mM	0.3065 mL	1.5323 mL	3.0647 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.37 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.37 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.37 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Bilobalide, a sesquiterpene trilactone constituent of Ginkgo biloba, inhibits the NMDA-induced efflux of choline with an IC₅₀ value of 2.3 μM. Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Exerts protective and trophic effects on neurons^{[1][2]}.

IC₅₀ & Target Human Endogenous Metabolite

In Vitro

Bilobalide (1-100 μ M) completely suppresses the NMDA-evoked release of choline in a concentration-dependent manner with IC₅₀ value of 2.3 μ M^[1].

Bilobalide (1, 5 and 10 μ M) alone for 24 h does not affect cell viability of SH-SY5Y cells. Pre-treatment of cells with Bilobalide concentration-dependently prevents A β 1-42-, H₂O₂- and serum deprivation-induced decrease of cell viability, with the best protective effect obtained at 10 μ M^[2].

Bilobalide (5 and 10 μ M; 24 h) treatment dose-dependently increases levels of p-Akt (Ser473 and Thr308) in SH-SY5Y cells^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis

Cell Line:	SH-SY5Y cells	
Concentration:	5 and 10 μM	
Incubation Time:	24 hours	
Result:	Induced a significant increase in levels of p-Akt (Ser473 and Thr308).	

In Vivo

Bilobalide (20 mg/kg) completely suppresses the NMDA-induced release of choline in vivo while basal choline levels were not significantly affected. NMDA causes a release of choline in vivo when infused into the hippocampus of freely moving rats by retrograde dialysis. Bilobalide (20 mg/kg i.p.) completely inhibits the effect induced by NMDA^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Wistar rats $(250-350~\mathrm{g})^{[1]}$	
Dosage:	20 mg/kg	
Administration:	I.p. injection 60 min before NMDA infusion	
Result:	Lowered basal choline efflux only slightly (by 7%) but fully antagonized the NMDA-induced increase of choline release. The convulsive effect of NMDA was almost completely suppressed.	

CUSTOMER VALIDATION

• Research Square Preprint. 2021 Aug.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. O Weichel, et al. Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1999 Dec;360(6):609-15.

[2]. Chun Shi, et al. Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Apoptosis. 2010 Jun;15(6):715-27.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA