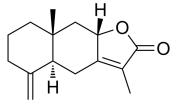
**Proteins** 

# Atractylenolide II

Cat. No.: HY-N0202 CAS No.: 73069-14-4 Molecular Formula:  $C_{15}H_{20}O_2$ Molecular Weight: 232.32

Target: Apoptosis; ERK


Pathway: Apoptosis; MAPK/ERK Pathway; Stem Cell/Wnt

Powder Storage: -20°C 3 years

2 years

In solvent -80°C 2 years

> -20°C 1 year



**Product** Data Sheet

### **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 100 mg/mL (430.44 mM; Need ultrasonic)

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 4.3044 mL | 21.5220 mL | 43.0441 mL |
|                              | 5 mM                          | 0.8609 mL | 4.3044 mL  | 8.6088 mL  |
|                              | 10 mM                         | 0.4304 mL | 2.1522 mL  | 4.3044 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (10.76 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (10.76 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (10.76 mM); Clear solution

## **BIOLOGICAL ACTIVITY**

Description

Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity.IC50 value: 82.3 µM(B16 melanoma cell, 48 h) [1]Target: anticancer natural compoundin vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75  $\mu$ M AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTa, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40

μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2].in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].

## **CUSTOMER VALIDATION**

- Pharmacol Res. 2020 May;155:104751.
- Biological Sciences. 2020 Sep.

See more customer validations on www.MedChemExpress.com

#### **REFERENCES**

[1]. Ye Y, et al. Atractylenolide II induces G1 cell-cycle arrest and apoptosis in B16 melanoma cells. J Ethnopharmacol. 2011 Jun 14;136(1):279-82.

[2]. Fu XQ, et al. Inhibition of STAT3 signalling contributes to the antimelanoma action of atractylenolide II. Exp Dermatol. 2014 Nov;23(11):855-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com