Anisodamine hydrobromide

Cat. No.: HY-N0584A CAS No.: 55449-49-5 Molecular Formula: C₁₇H₂₄BrNO₄

Molecular Weight: 386.28 mAChR Target:

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (258.88 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5888 mL	12.9440 mL	25.8880 mL
	5 mM	0.5178 mL	2.5888 mL	5.1776 mL
	10 mM	0.2589 mL	1.2944 mL	2.5888 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.38 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.38 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (5.38 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Anisodamine hydrobromide (6-Hydroxyhyoscyamine hydrobromide), a belladonna alkaloid, is a non-subtype-selective muscarinic and a nicotinic cholinoceptor antagonist. Anisodamine hydrobromide shows antioxidant, anti-inflammatory properties ^{[1][2]} .	
IC ₅₀ & Target	Nicotinic cholinoceptor $^{[1]}$	
In Vitro	Anisodamine hydrobromide (100 μ g/mL; 20 minutes; RAW264.7 cells) pretreatment for 20 minutes before Ach results in significantly attenuated average fluorescence intensity of α -bungarotoxin binding compared with Ach alone ^[2] .	

	ACh binding to the α-7r	Anisodamine hydrobromide action might be through blockade of muscarinic receptors and thus allowing more endogenous ACh binding to the α -7nAChR ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	Anisodamine hydrobromide (50 mg/kg; i.p.; 72 hours) markedly decreases the mortality to 20% ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
	Animal Model:	LPS-Induced Shock $Mice^{[2]}$		
	Dosage:	50 mg/kg		
	Administration:	l.p.		
	Result:	Markedly decreased the mortality to 20%.		

REFERENCES

 $[1]. \ Eisenkraft \ A. \ Possible \ role \ for \ an isodamine \ in \ or \ gan ophosphate \ poisoning. \ Br \ J \ Pharmacol. \ 2016;173(11):1719-1727.$

[2]. Liu C, et al. Antishock effect of anisodamine involves a novel pathway for activating alpha7 nicotinic acetylcholine receptor. Crit Care Med. 2009;37(2):634-641.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA