Proteins

Aclacinomycin A hydrochloride

Cat. No.: HY-N2306A CAS No.: 75443-99-1 Molecular Formula: $C_{42}H_{54}CINO_{15}$

Molecular Weight: 848.33

Target: Proteasome; Topoisomerase; Antibiotic; DNA/RNA Synthesis

Pathway: Metabolic Enzyme/Protease; Cell Cycle/DNA Damage; Anti-infection

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 125 \text{ mg/mL} (147.35 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.1788 mL	5.8939 mL	11.7879 mL
	5 mM	0.2358 mL	1.1788 mL	2.3576 mL
	10 mM	0.1179 mL	0.5894 mL	1.1788 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (2.45 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (2.45 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	A hydrochloride is an inhibito	hydrochloride is an orally active and potent anthracycline antitumor antibiotic. Aclacinomycin r of topoisomerase I and II. Aclacinomycin A hydrochloride inhibits synthesis of nucleic acid, n A hydrochloride might inhibit the 26S protease complex as well as the ubiquitin-ATP-
IC ₅₀ & Target	Topoisomerase I	Topoisomerase II

Aclacinomycin A (0-120 μ M, 30 min) inhibits the ubiquitin-ATP-dependent proteolytic activity of rabbit reticulocytes in a In Vitro dose-dependent manner, with an IC $_{50}$ of 52 μ M. But it does not inhibit the ubiquitination [1]. Aclacinomycin A inhibits ubiquitin-ATP-dependent proteolysis after the conjugation of ubiquitin to proteins^[1].

Aclacinomycin A (0-2.4 μ M, 3 h) inhibits the topo II catalytic activity^[2].

Aclacinomycin A (0-1.8 μ M, 3 h) has negative effect on the proliferative rate of V79 and irs-2 cells^[2].

Aclacinomycin A emits fluorescence and that human-cervical cancer HeLa cells exposed to Aclacinomycin A exhibits bright fluorescence signals in the cytoplasm when fluorescence microscopy was performed using the red filter (excitation 530-550 nm/emission 575 nm)^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[2]

Cell Line:	V79 and irs-2 cells	
Concentration:	0, 0.006, 0.12, 1.2, and 2.4 μM	
Incubation Time:	3 h	
Result: Inhibited the topo II catalytic activity in a dose-dependent manner. The loss of catalytic activity in ACLA-treated cells was in all cases significant compared with treated cells.		

Cell Proliferation Assay^[2]

Cell Line:	V79 and irs-2 cells	
Concentration:	0, 0.12, 0.25, 0.37, 0.6, 1.2, 1.8 μM	
Incubation Time:	3 h	
Result:	Showed a dose-dependent negative effect on the proliferative rate of V79 and irs-2 cells, but the reduction in surviving colonies was higher in the radiosensitive irs-2 cells for most of the ACLA doses tested.	

In Vivo

 $\label{eq:control_problem} A \ (0.75\text{-}6 \ mg/kg, IP, daily) \ dose-dependently exhibits tumor growth in mice-based Leukemia P-388 \ model^{[4]}.$ $A \ clacinomycin \ A \ (0.6\text{-}20 \ mg/kg, Orally, daily) \ exhibits an antitumor effect on leukemia \ L-1210^{[4]}.$

Aclacinomycin A is very well absorbed in mice, rats, and dogs after its oral administration. The oral LD $_{50}$ (76.5 mg/kg) is about twice the iv LD $_{50}$ (35.6 mg/kg) in mice^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	DBA/2, CDF ₁ (BALB/c×DBA/2) mice with Leukemia P-388 ^{[4} .	
Dosage:	0.75 mg/kg, 1.5 mg/kg, 3 mg/kg, 6 mg/kg.	
Administration:	Intraperitoneal administration daily for 10 days starting 3 hr after transplantation.	
Result:	Inhibited tumor growth.	
Animal Model:	${ m CDF_1}$ mouse with Leukemia L-1210 $^{[4]}$	
Dosage:	0.6 mg/kg, 1.25 mg/kg, 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg	
Administration:	Orally, daily for days 1-9	

Exhibited an antitumor effect on leukemia L-1210.

CUSTOMER VALIDATION

Result:

- Bioengineered. 2022 Feb;13(2):2207-2216.
- Int J Hyperthermia. 2022;39(1):998-1009.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Isoe T, et al. Inhibition of different steps of the ubiquitin system by CDDP and aclarubicin. Biochim Biophys Acta. 1992 Sep 15;1117(2):131-5.
- [2]. Hajji N, et al. Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor. Mutat Res. 2005 May 2;583(1):26-35.
- [3]. Iihoshi H, et al. Aclarubicin, an anthracycline anti-cancer drug, fluorescently contrasts mitochondria and reduces the oxygen consumption rate in living human cells. Toxicol Lett. 2017 Aug 5;277:109-114.
- [4]. Hori S, et al. Antitumor activity of new anthracycline antibiotics, aclacinomycin-A and its analogs, and their toxicity. Gan. 1977 Oct;68(5):685-90.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA