Proteins

Product Data Sheet

Aclacinomycin A

Cat. No.: HY-N2306 CAS No.: 57576-44-0 Molecular Formula: $\mathsf{C}_{42}\mathsf{H}_{53}\mathsf{NO}_{15}$ Molecular Weight: 811.87

Topoisomerase; DNA/RNA Synthesis; Proteasome; Antibiotic Target:

Pathway: Cell Cycle/DNA Damage; Metabolic Enzyme/Protease; Anti-infection

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (61.59 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.2317 mL	6.1586 mL	12.3172 mL
	5 mM	0.2463 mL	1.2317 mL	2.4634 mL
	10 mM	0.1232 mL	0.6159 mL	1.2317 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description Aclacinomycin A (Aclarubicin) is an orally active and potent anthracycline antitumor antibiotic. Aclacinomycin A is an inhibitor of topoisomerase I and II. Aclacinomycin A inhibits synthesis of nucleic acid, especially RNA. Aclacinomycin A might

	inhibit the 26S protease complex as well as the ubiquitin-ATP-dependent proteolysis[1][2][3].		
IC ₅₀ & Target	Topoisomerase I	Topoisomerase II	
In Vitro	dose-dependent manner, with Aclacinomycin A inhibits ubiq Aclacinomycin A (0-2.4 µM, 3 h Aclacinomycin A (0-1.8 µM, 3 h Aclacinomycin A emits fluores fluorescence signals in the cylinm/emission 575 nm) ^[3] .	0 min) inhibits the ubiquitin-ATP-dependent proteolytic activity of rabbit reticulocytes in a h an IC_{50} of 52 μ M. But it does not inhibit the ubiquitination ^[1] . uitin-ATP-dependent proteolysis after the conjugation of ubiquitin to proteins ^[1] . n) inhibits the topo II catalytic activity ^[2] . n) has negative effect on the proliferative rate of V79 and irs-2 cells ^[2] . Scence and that human-cervical cancer HeLa cells exposed to Aclacinomycin A exhibits bright toplasm when fluorescence microscopy was performed using the red filter (excitation 530-550 confirmed the accuracy of these methods. They are for reference only.	

Cell Line:	V79 and irs-2 cells
Concentration:	0, 0.006, 0.12, 1.2, and 2.4 μM
Incubation Time:	3 h
Result:	Inhibited the topo II catalytic activity in a dose-dependent manner. The loss of topo II catalytic activity in ACLA-treated cells was in all cases significant compared with non-treated cells.

Cell Proliferation Assay^[2]

Cell Line:	V79 and irs-2 cells
Concentration:	0, 0.12, 0.25, 0.37, 0.6, 1.2, 1.8 μΜ
Incubation Time:	3 h
Result:	Showed a dose-dependent negative effect on the proliferative rate of V79 and irs-2 cells, but the reduction in surviving colonies was higher in the radiosensitive irs-2 cells for most of the ACLA doses tested.

In Vivo

 $\label{eq:control_problem} A \ (0.75\text{-}6\ mg/kg, IP, daily)\ dose-dependently\ exhibits\ tumor\ growth\ in\ mice-based\ Leukemia\ P-388\ model^{[4]}.$ $\ A \ clacinomycin\ A\ (0.6\text{-}20\ mg/kg,\ Orally,\ daily)\ exhibits\ an\ antitumor\ effect\ on\ leukemia\ L-1210^{[4]}.$

Aclacinomycin A is very well absorbed in mice, rats, and dogs after its oral administration. The oral LD₅₀ (76.5 mg/kg) is about twice the iv LD₅₀ (35.6 mg/kg) in mice^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	DBA/2, CDF ₁ (BALB/c×DBA/2) mice with Leukemia P-388 (90-110 g) ^[4] .
Dosage:	0.75 mg/kg, 1.5 mg/kg, 3 mg/kg, 6 mg/kg
Administration:	Intraperitoneal administration daily for 10 days starting 3 hr after transplantation.
Result:	Inhibited tumor growth.
Animal Model:	${ m CDF_1}$ mouse with Leukemia L-1210 $^{[4]}$
Dosage:	0.6 mg/kg, 1.25 mg/kg, 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg
Administration:	Orally, daily for days 1-9
Result:	Exhibited an antitumor effect on leukemia L-1210.

CUSTOMER VALIDATION

- Bioengineered. 2022 Feb;13(2):2207-2216.
- Int J Hyperthermia. 2022;39(1):998-1009.
- bioRxiv. 2023 Jan 13.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Isoe T, et al. Inhibition of different steps of the ubiquitin system by CDDP and aclarubicin. Biochim Biophys Acta. 1992 Sep 15;1117(2):131-5.
- [2]. Hajji N, et al. Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor. Mutat Res. 2005 May 2;583(1):26-35.
- [3]. Iihoshi H, et al. Aclarubicin, an anthracycline anti-cancer drug, fluorescently contrasts mitochondria and reduces the oxygen consumption rate in living human cells. Toxicol Lett. 2017 Aug 5;277:109-114.
- [4]. Hori S, Shirai M, Hirano S, Oki T, Inui T, Tsukagoshi S, Ishizuka M, Takeuchi T, Umezawa H. Antitumor activity of new anthracycline antibiotics, aclacinomycin-A and its analogs, and their toxicity. Gan. 1977 Oct;68(5):685-90.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com