

## 2-Hydroxy-4-methoxybenzaldehyde

Cat. No.:HY-N0445CAS No.:673-22-3Molecular Formula: $C_8H_8O_3$ Molecular Weight:152.15

Target: Tyrosinase; Bacterial

Pathway: Metabolic Enzyme/Protease; Anti-infection

**Storage:** 4°C, stored under nitrogen

\* In solvent : -80°C, 6 months; -20°C, 1 month (stored under nitrogen)

## **SOLVENT & SOLUBILITY**

In Vitro DMSO:  $\geq 50 \text{ mg/mL} (328.62 \text{ mM})$ 

H<sub>2</sub>O: 2 mg/mL (13.14 mM; Need ultrasonic)

\* "≥" means soluble, but saturation unknown.

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 6.5725 mL | 32.8623 mL | 65.7246 mL |
|                              | 5 mM                          | 1.3145 mL | 6.5725 mL  | 13.1449 mL |
|                              | 10 mM                         | 0.6572 mL | 3.2862 mL  | 6.5725 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 50 mg/mL (328.62 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (16.43 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- $\beta$ -CD in saline) Solubility:  $\geq$  2.5 mg/mL (16.43 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (16.43 mM); Clear solution

## **BIOLOGICAL ACTIVITY**

| Description | $2-hydroxy-4-methoxy benzalde hyde is a potent tyrosinase inhibitor \cite{bitor}. 2-Hydroxy-4-methoxy benzalde hyde, an isomer of the property of the propert$ |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | Vanillin, could be used to synthesis Urolithin M7 <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

IC<sub>50</sub> & Target Tyrosinase<sup>[2]</sup>.

In Vitro

2-Hydroxy-4-methoxybenzaldehyde inhibits the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) by mushroom tyrosinase with an ID $_{50}$  of 4.3  $\mu$ g/mL (0.03 mM) $^{[1]}$ .

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

## **REFERENCES**

[1]. Bodwell Graham, et al. An Inverse Electron-Demand Diels-Alder-Based Total Synthesis of Urolithin M7. Synlett. 2011 (15): 2245.

[2]. Kubo I, et al. 2-Hydroxy-4-methoxybenzaldehyde: a potent tyrosinase inhibitor from African medicinal plants. Planta Med. 1999 Feb;65(1):19-22.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA