Proteins

Screening Libraries

Product Data Sheet

Trimetazidine

Cat. No.: HY-B0968A CAS No.: 5011-34-7 Molecular Formula: $C_{14}H_{22}N_2O_3$ Molecular Weight: 266.34 Target: Autophagy

4°C, protect from light, stored under nitrogen Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light, stored under

nitrogen)

Autophagy

		N	NH
0	0	\	/\ \ \\
_0			

SOLVENT & SOLUBILITY

In Vitro

Pathway:

DMSO: ≥ 125 mg/mL (469.32 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.7546 mL	18.7730 mL	37.5460 mL
	5 mM	0.7509 mL	3.7546 mL	7.5092 mL
	10 mM	0.3755 mL	1.8773 mL	3.7546 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (7.81 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (7.81 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (7.81 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Trimetazidine is a selective long chain 3-ketoyl coenzyme A thiolase inhibitor with an IC $_{50}$ of 75 nM, which can inhibit β oxidation of free fatty acid (FFA). Trimetazidine is an effective antianginal agent and a cytoprotective agent, has antioxidant, anti-inflammatory, antinociceptive and gastroprotective properties. Trimetazidine triggers autophagy. Trimetazidine is also a 3-hydroxyacyl-CoA dehydrogenase (HADHA) inhibitor^{[1][2][3][4]}.

IC₅₀ & Target

IC50: 75 nM (long chain 3-ketoyl coenzyme A thiolase)^[2] β-oxidation^[2]

Page 1 of 3

	Autophagy ^[3] 3-hydroxyacyl-CoA dehy	drogenase (HADHA) ^[4]	
In Vitro	certain dose-dependent	Trimetazidine (1-100 μ M; 24 hours; HUVECs) could enhance the viability of the injured HUVECs induced by oxidation in a certain dose-dependent manner ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[1]	
	Cell Line:	Human umbilical vein endothelial cells (HUVECs)	
	Concentration:	1 μΜ,10 μΜ,100 μΜ	
	Incubation Time:	24 hours	

In Vivo

Trimetazidine (5-20 mg/kg; oral administration; 1 hour; Swiss albino male mice) in 10 and 20mg/kg doses significantly raises the seizure-threshold current in the ICES test in the mice^[5].

Enhanced the viability of the injured HUVECs induced by oxidation.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Swiss albino male mice (24-35 g) ^[4]
Dosage:	5 mg/kg, 10 mg/kg and 20 mg/kg; 10 mL/kg body weight
Administration:	Oral administration ; 1 hour
Result:	In 10 and 20mg/kg doses significantly raised the seizure-threshold current in the ICES test.

CUSTOMER VALIDATION

- Mol Cell. 2020 Oct 1;80(1):43-58.e7.
- Acta Pharmacol Sin. 2022 Feb 25.
- J Pharmaceut Biomed. 2020, 113870.
- Anatol J Cardiol. 2019 Nov;22(5):232-239.

See more customer validations on www.MedChemExpress.com

Result:

REFERENCES

- [1]. Shenghu He, et al. Protective effects of trimetazidine against vascular endothelial cell injury induced by oxidation. Journal of Geriatric Cardiology, December 2008, Vol 5 No 4.
- [2]. Kantor PF, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000 Mar 17;86(5):580-8.
- $[3]. \ Jain S, et al. \ Trimetazidine \ exerts \ protection \ against \ increasing \ current \ electroshock \ seizure \ test \ in \ mice. \ Seizure. \ 2010 \ Jun; 19(5):300-2.$
- [4]. Chrusciel P, et al. Defining the role of trimetazidine in the treatment of cardiovascular disorders: some insights on its role in heart failure and peripheral artery disease. Drugs. 2014 Jun;74(9):971-80.

Page 2 of 3 www.MedChemExpress.com

5]. Hossain F, et al.Inhibition c Cancer Immunol Res. 2015 Nov		es Immunosuppressive Function	s of Myeloid-Derived Suppressor Co	ells and Enhances Cancer Therapies.
			lical applications. For research	
	Tel: 609-228-6898 Address: 1 D	Fax: 609-228-5909 eer Park Dr, Suite Q, Monmou	E-mail: tech@MedChemExp	ress.com
	7.00.000.2			

Page 3 of 3 www.MedChemExpress.com