Product Data Sheet

Thiamine nitrate

Cat. No.: HY-B2223 CAS No.: 532-43-4 Molecular Formula: $C_{12}H_{17}N_{5}O_{4}S$ Molecular Weight: 327.36

Target: Endogenous Metabolite; Bacterial

Pathway: Metabolic Enzyme/Protease; Anti-infection

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 20 mg/mL (61.09 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.0547 mL	15.2737 mL	30.5474 mL
	5 mM	0.6109 mL	3.0547 mL	6.1095 mL
	10 mM	0.3055 mL	1.5274 mL	3.0547 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.64 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.64 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.64 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Thiamine nitrate is an essential vitamin which can enhance normal neuronal actives.		
IC ₅₀ & Target	Microbial Metabolite Human Endogenous Metabolite		
In Vitro	Thiamine levels in the blood of homozygous KO and KI mice fed a conventional diet are decreased to 0.058 ± 0.051 and $0.126\pm0.092~\mu\text{M}$, respectively, at 7 weeks compare to WT mice (0.796 $\pm0.259~\mu\text{M}$). When WT and homozygous KO and KI mice are fed a Thiamine-restricted diet (Thiamine: $0.60~\text{mg}/100~\text{g}$ food), blood Thiamine concentration at 5 and 14 days is markedly decreased to $0.010\pm0.009~\text{and}~0.010\pm0.006~\mu\text{M}$, respectively, compare to WT mice ($0.609\pm0.288~\mu\text{M}$). Thiamine		

concentration in brain homogenate of WT mice fed a conventional diet is 3.81 ± 2.18 nmol/g wet weight, and that of KO and KI is 1.33 ± 0.96 and 2.16 ± 1.55 nmol/g wet weight, respectively. Notably, Thiamine concentration in brain homogenate decreases steadily in KO and KI mice fed a thiamine-restrict diet (Thiamine: 0.60 mg/100 g food) for 5 days (0.95 ± 0.72 nmol/g wet weight) and 14 days (1.11 ± 0.24 nmol/g wet weight), respectively, compare to WT (3.65 ± 1.02 nmol/g wet weight), before the mice presenting an phenotype of disease^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

WT, homozygous, and heterozygous KO and KI mice fed a conventional diet (thiamine: 1.71 mg/100 g) survive for over 6 months without any phenotype of disease. Homozygous KO and KI mice fed a Thiamine-restricted diet (thiamine: 0.60 mg/100 g food) show paralysis, weight loss, and immobility, and die within 12 and 30 days, respectively. Similarly, homozygous KO and KI mice fed a Thiamine-restricted diet with an even lower percentage of Thiamine (Thiamine: 0.27 mg/100 g food) die within 14 and 18 days, respectively. However, WT and heterozygous KO and KI mice fed a Thiamine-restricted diet (Thiamine: 0.60 mg or 0.27 mg/100g food) survive for over 6 months without any phenotype of disease^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal
Administration [2]

Slc19a3 E314Q KI mice are maintained routinely with conventional diet, which has a Thiamine concentration (thiamine hydrochloride, MW=337.3) of 1.71 mg/100 g food. Two types of Thiamine-restrict food base on "purified diets for laboratory rodents" are prepared, in which Thiamine concentration is 0.60 mg/100 g food (35% Thiamine of conventional food) or 0.27 mg/100 g food (16% Thiamine of conventional food). A high-Thiamine-containing food is also prepared from AIN-93M, in which Thiamine concentration is five times that of CE-2 (thiamine: 8.50 mg/100 g food) $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Kenneth Osiezagha, et al. Thiamine Deficiency and Delirium. Innov Clin Neurosci. 2013 Apr; 10(4): 26-32.

[2]. Kaoru Suzuki, et al. High-dose thiamine prevents brain lesions and prolongs survival ofSlc19a3-deficient mice. PLoS One. 2017; 12(6): e0180279.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA