MCE RedChemExpress

Product Data Sheet

TMA-DPH

 Cat. No.:
 HY-D0986

 CAS No.:
 115534-33-3

 Molecular Formula:
 C₂₈H₃₁NO₃S

 Molecular Weight:
 461.62

Target: Fluorescent Dye

Pathway: Others

Storage: -20°C, sealed storage, away from moisture and light

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro

DMSO: 10 mg/mL (21.66 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1663 mL	10.8314 mL	21.6628 mL
	5 mM	0.4333 mL	2.1663 mL	4.3326 mL
	10 mM	0.2166 mL	1.0831 mL	2.1663 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1 mg/mL (2.17 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1 mg/mL (2.17 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: 1 mg/mL (2.17 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

TMA-DPH is a hydrophobic fluorescent membrane probe (Ex=355 nm; Em=430 nm). TMA-DPH is able to anchor on the cell surface and localize to different regions of the phospholipid bilayer. By analyzing the fluorescence polarization values of TMA-DPH in the plasma membrane and membrane substructures, the fluidity of the cell membrane can be determined [1][2] [3].

In Vitro

Upon contact with cells, TMA-DPH is immediately integrated into the plasma membrane and subsequently concentrated in lysosomes and highly acidic late endosomes^[1].

The TMA-DPH fluorescence lifetime, which remained constant at concentrations below 2 μ M, was 6.2 \pm 0.2 ns. When the concentration is higher than 2 μ M, there is a significant decrease with increasing concentration; when the concentration

exceeds 5 μ M, the rate of decrease decreases. TMA-DPH fluorescence anisotropy shows a similar evolution to the fluorescence lifetime. First, it remains constant at 0.283 \pm 0.003 at concentrations below 2 μ M. There is a significant decrease with increasing concentration when the concentration is higher than 2 μ M; then it rapidly decreases to 0.270 \pm 0.003 at 5 μ M, and the subsequent decrease rate decreases significantly^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

L929 cells in 2 mL DM10F are allowed to adhere on microscope slide flasks. For the observation of plasma membrane labeling, cells are incubated for a short time (10 s) at room temperature with TMA-DPH 2×10^{-6} M in PBS or in DM10F from a 4×10^{-3} M stock solution in dimethylformamide. The unwashed slide is then transferred to the microscope and observed. For the labeling of internalized membrane, the cells are incubated in slide flasks at 37°C, with TMA-DPH 2×10^{-6} M in DM10F for the desired time, and then washed by gently shaking the slide in PBS for a few seconds^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Stem Cell Res Ther. 2024 Jan 8;15(1):12.
- Ecotoxicol Environ Saf. 2022 Dec 9;249:114375.
- Ecotoxicol Environ Saf. 2021 Dec 20;227:112885.
- Biotechnol Biofuels. 2019 Mar 19;12:59.
- Food Funct. 2020 Jan 29;11(1):700-710.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Benedetti A, et al. Plasma membrane fluidity in isolated rat hepatocytes: comparative study using DPH and TMA-DPH as fluorescent probes. J Gastroenterol Hepatol. 1989 May-Jun;4(3):221-7.

[2]. Illinger D, et al. The kinetic aspects of intracellular fluorescence labeling with TMA-DPH support the maturation model for endocytosis in L929 cells. J Cell Biol. 1994 May;125(4):783-94.

[3]. Illinger D, et al. A comparison of the fluorescence properties of TMA-DPH as a probe for plasma membrane and for endocytic membrane. Biochim Biophys Acta. 1995 Oct 4;1239(1):58-66.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com