Screening Libraries

Inhibitors

Sulfanilamide-d₄

Cat. No.: HY-B0242S1 CAS No.: 77435-46-2 Molecular Formula: $C_6H_4D_4N_2O_2S$

Molecular Weight: 176.23

Target: Bacterial; Antibiotic

Pathway: Anti-infection Storage:

Powder -20°C 3 years 2 years

In solvent -80°C 6 months

> -20°C 1 month

$$\begin{array}{c|c}
D & O & NH \\
\hline
O & D & D
\end{array}$$

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (567.44 mM; Need ultrasonic) H2O: 10 mg/mL (56.74 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.6744 mL	28.3720 mL	56.7440 mL
	5 mM	1.1349 mL	5.6744 mL	11.3488 mL
	10 mM	0.5674 mL	2.8372 mL	5.6744 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

 $Sulfanilamide-d_{4}\ is\ the\ deuterium\ labeled\ Sulfanilamide.\ Sulfanilamide\ is\ a\ competitive\ inhibitor\ for\ bacterial\ enzyme$ dihydropteroate synthetase with IC50 of 320 μM .

In Vitro

Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

[2]. McCullough, J.L. and T.H. Maren, Inhibition of dihydropteroate synthetase from Escherichia coli by sulfones and sulfonamides. Antimicrob Agents Chemother, 1973.

3(6): p. 665-9.

[3]. Meneau, I., et al., Pneumocystis jiroveci dihydropteroate synthase polymorphisms confer resistance to sulfadoxine and sulfanilamide in Saccharomyces cerevisiae. Antimicrob Agents Chemother, 2004. 48(7): p. 2610-6.

[4]. Hughes, W.T. and J. Killmar, Monodrug efficacies of sulfonamides in prophylaxis for Pneumocystis carinii pneumonia. Antimicrob Agents Chemother, 1996. 40(4): p. 962-5.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA