Product Data Sheet

Spiperone hydrochloride

 Cat. No.:
 HY-B1371A

 CAS No.:
 2022-29-9

Molecular Formula: $C_{23}H_{27}ClFN_3O_2$ Molecular Weight: 431.93

Target: Dopamine Receptor; 5-HT Receptor; Adrenergic Receptor; Chloride Channel Pathway: GPCR/G Protein; Neuronal Signaling; Membrane Transporter/Ion Channel

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (289.40 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3152 mL	11.5759 mL	23.1519 mL
	5 mM	0.4630 mL	2.3152 mL	4.6304 mL
	10 mM	0.2315 mL	1.1576 mL	2.3152 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (4.82 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (4.82 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (4.82 mM); Clear solution

BIOLOGICAL ACTIVITY

Spiperone hydrochloride (Spiroperidol hydrochloride) is a selective dopamine D_2 receptor (K_i values of 0.06 nM, 0.6 nM, 0.08 nM, ~350 nM, ~3500 nM for D_2 , D_3 , D_4 , D_1 and D_5 receptors, respectively) and 5-HT_{2A}/5-HT_{1A} receptor (K_i s of 1 nM/49 nM) antagonist. Spiperone hydrochloride is also a selective α 1B-adrenoceptor antagonist. Spiperone hydrochloride activates

calcium-activated chloride channel (CaCC). Antipsychotic and anti-inflammatory activities [1][2][3][4][5].

IC₅₀ & Target	D ₂ Receptor 0.06 nM (Ki)	D ₃ Receptor	D ₄ Receptor	5-HT _{2A} Receptor 1 nM (Ki)
	5-HT _{1A} Receptor	α1B-adrenoceptor	Calcium-activated chloride	D ₁ Receptor

	49 nM (Ki)		channel	~350 nM (Ki)	
	D ₃ Receptor 0.6 nM (Ki)	D ₄ Receptor 0.08 nM (Ki)	D ₅ Receptor ~3500 nM (Ki)		
In Vitro	Spiperone is a potent intracellular Ca^{2+} enhancer (EC_{50} =9.3 μ M) and stimulates intracellular Ca^{2+} through a protein tyrosine kinase-coupled phospholipase C-dependent pathway, which results in increased secretion of Cl^- in Calu-3 and CFBE410 $^-$ cell monolayers ^[2] . Spiperone significantly decreases the production of nitric oxide in lipopolysaccharide-stimulated BV-2 microglia cells, primary microglia and primary astrocyte cultures. Spiperone also significantly inhibits nitric oxide production in ATP-stimulated primary microglia cultures. Spiperone markedly decreases the production of TNF- α in BV-2 microglia cells. Spiperone attenuates the expression of inducible nitric oxide synthase and proinflammatory cytokines such as IL-1 β and TNF- α at mRNA levels in BV-2 microglia cells ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	Spiperone (1.5 mg/kg; intraperitoneal injection; on days 1, 3, 6, 7, and 13-21; C57Bl/6 mice) treatment reduces infiltration of the alveolar interstitium and alveolar ducts with inflammatory cells and prevents the growth of the connective tissue in the parenchyma of Bleomycin lungs ^[6] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Animal Model: C57Bl/6 mice (7-8-week-old) induced pulmonary fibrosis by Bleomycin ^[6] Dosage: 1.5 mg/kg Administration: Intraperitoneal injection; on days 1, 3, 6, 7, and 13-21				
	Result:	Reduced infiltration of the alveolar interstitium and alveolar ducts with inflammatory cells and prevented the growth of the connective tissue in the parenchyma of bleomycin lungs.			

REFERENCES

- [1]. P Seeman, et al. Dopamine receptor pharmacology. Trends Pharmacol Sci. 1994 Jul;15(7):264-70.
- [2]. Lihua Liang, et al. Spiperone, identified through compound screening, activates calcium-dependent chloride secretion in the airway. Am J Physiol Cell Physiol. 2009 Jan;296(1):C131-41.
- [3]. Long Tai Zheng, et al. The antipsychotic spiperone attenuates inflammatory response in cultured microglia via the reduction of proinflammatory cytokine expression and nitric oxide production. J Neurochem. 2008 Dec;107(5):1225-35.
- [4]. Richard A Glennon, et al. Ketanserin and spiperone as templates for novel serotonin 5-HT(2A) antagonists. Curr Top Med Chem. 2002 Jun;2(6):539-58.
- [5]. Andrea E Errasti, et al. Human umbilical vein vasoconstriction induced by epinephrine acting on alpha1B-adrenoceptor subtype. Am J Obstet Gynecol. 2003 Nov;189(5):1472-80.
- [6]. E G Skurikhin, et al. Effect of spiperone on mesenchymal multipotent stromal and hemopoietic stem cells under conditions of pulmonary fibrosis. Bull Exp Biol Med. 2014 May;157(1):132-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com