

Product Data Sheet

Safinamide mesylate

Cat. No.: HY-70057A CAS No.: 202825-46-5 Molecular Formula: $C_{18}H_{23}FN_2O_5S$ Molecular Weight: 398.45

Target: Monoamine Oxidase

Pathway: Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro DMSO: 250 mg/mL (627.43 mM; Need ultrasonic)

 $H_2O : \ge 20 \text{ mg/mL } (50.19 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5097 mL	12.5486 mL	25.0972 mL
	5 mM	0.5019 mL	2.5097 mL	5.0195 mL
	10 mM	0.2510 mL	1.2549 mL	2.5097 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.22 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.22 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: \geq 2.08 mg/mL (5.22 mM); Clear solution

BIOLOGICAL ACTIVITY

Safinamide (FCE 26743; EMD 1195686) mesylate is a potent, selective, and reversible monoamine oxidase B (MAO-B) inhibitor (IC $_{50}$ =0.098 μ M) over MAO-A (IC $_{50}$ =580 nM) $^{[1]}$. Safinamide mesylate also blocks sodium channels and modulates glutamate (Glu) release, showing a greater affinity at depolarized (IC $_{50}$ =8 μ M) than at resting (IC $_{50}$ =262 μ M) potentials. Safinamide mesylate has neuroprotective and neurorescuing effects and can be used for the study of parkinson disease, ischemia stroke et.al $^{[2][3]}$.

IC₅₀ & Target MAO-B MAO-A

	98 nM (IC ₅₀)	580 nM (IC ₅₀)	
In Vitro	Safinamide mesylate (1-300 μ M) reduces the amplitude of the peak sodium currents in a concentration-dependent manner. When currents are stimulated to a V _{test} of +10 mV from a V _h of -110 mV, the IC ₅₀ value was 262 μ M. When the holding potential is depolarized to -53 mV, the inhibitory effect of Safinamide mesylate with a lower IC ₅₀ value (8 μ M) in rat cortical neurons ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	Safinamide mesylate (intraperitoneal injection; 90 mg/kg; once daily; 14 days) treatment prior to MCAO significantly ameliorates MCAO-caused cerebral infarction volume, neurological deficit, disruption of the brain-blood barrier (BBB), and impairs expression of tight junction protein occludin and ZO-1 in mice ^[3] . Safinamide mesylate (intraperitoneal injection; 5 mg/kg, 15 mg/kg and 30 mg/kg) dose dependently inhibits the veratridine-induced GABA release and Glu release in vivo. At the dose 30 mg/kg, Safinamide mesylate prevents the effect of veratridine both on Glu (treatment F1,8=1.31; time×treatment interaction F8,64=2.4) and GABA (treatment F1,8=4.04; time F8,64=3.76, time×treatment interaction F8,64=2.83) release. Safinamide mesylate causes a slight, albeit not significant, reduction of veratridine-stimulated Glu release at 0.5 mg/kg and full inhibition at 5 and 15 mg/kg in rat ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

CUSTOMER VALIDATION

• Ecotoxicol Environ Saf. 2023 Aug 7;262:115284.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Leonetti F, et al. Solid-phase synthesis and insights into structure-activity relationships of safinamide analogues as potent and selective inhibitors of type B monoamine oxidase. J Med Chem, 2007, 50(20), 4909-4916.
- [2]. C Caccia, et al. Safinamide: from molecular targets to a new anti-Parkinson drug. Neurology. 2006 Oct 10;67(7 Suppl 2):S18-23.
- [3]. Michele Morari, et al. Safinamide Differentially Modulates In Vivo Glutamate and GABA Release in the Rat Hippocampus and Basal Ganglia. J Pharmacol Exp Ther. 2018 Feb;364(2):198-206.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA