Proteins

Screening Libraries

Product Data Sheet

Ropinirole hydrochloride

Cat. No.: HY-B0623A CAS No.: 91374-20-8 Molecular Formula: $C_{16}H_{25}CIN_{2}O$ Molecular Weight:

Target: **Dopamine Receptor**

297

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 100 mg/mL (336.70 mM; Need ultrasonic) DMSO: 16.67 mg/mL (56.13 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.3670 mL	16.8350 mL	33.6700 mL
	5 mM	0.6734 mL	3.3670 mL	6.7340 mL
	10 mM	0.3367 mL	1.6835 mL	3.3670 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 100 mg/mL (336.70 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.67 mg/mL (5.62 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1.67 mg/mL (5.62 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.67 mg/mL (5.62 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	$Ropinirole (SKF~101468)~hydrochloride~is~an~orally~active, potent~D_3/D_2~receptor~agonist~with~a~K_i~of~29~nM~for~D_2~receptor~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agonist~agon$				
	Ropinirole hydrochloride has pEC ₅₀ s of 7.4, 8.4 and 6.8 for hD ₂ , hD ₃ and hD ₄ receptors, respectively. Ropinirole				
	$hydrochloride\ has\ no\ affinity\ for\ the\ D_1\ receptors.\ Ropinirole\ hydrochloride\ has\ the\ potential\ for\ Parkinson's\ disease^{[1][2]}.$				

IC₅₀ & Target D₂ Receptor hD₂ Receptor hD₃ Receptor hD_{4.4} Receptor 29 nM (Ki) 7.4 (pEC50) 8.4 (pEC50) 6.8 (pEC50)

In Vitro	Ropinirole hydrochloride has affinity for D_3 receptors of 10-20 fold higher than the D_2 and D_4 receptors. Ropinirole hydrochloride is weakly active at alpha 2-adrenoceptors and 5-HT $_2$ receptors but inactive at 5-HT $_1$, benzodiazepine and gamma-aminobutyric acid receptors or alpha 1 and beta-adrenoceptors $^{[1][2]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	antidepressive-like effec	g; i.p.) decreases intracranial self-stimulation (ICSS) thresholds and induces anxiolytic- and cts without affecting motor activity or spatial memory ^[2] . Intly confirmed the accuracy of these methods. They are for reference only. Male Sprague–Dawley rats weighing 220-350 g ^[2] 0.1, 1 or 10 mg/kg i.p.	
	Result:	Decreased ICSS thresholds and induced anxiolytic- and antidepressive-like effects without affecting motor activity or spatial memory.	

REFERENCES

[1]. Eden, R.J., et al., Preclinical pharmacology of ropinirole (SK&F 101468-A) a novel dopamine D2 agonist. Pharmacol Biochem Behav, 1991. 38(1): p. 147-54.

[2]. Mavrikaki M, et al. Ropinirole regulates emotionality and neuronal activity markers in the limbic forebrain. Int J Neuropsychopharmacol. 2014 Dec;17(12):1981-93.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA