Product Data Sheet

Ritonavir

Cat. No.: HY-90001 CAS No.: 155213-67-5 Molecular Formula: $C_{37}H_{48}N_6O_5S_2$ Molecular Weight: 720.94

Target: HIV Protease; HIV; Apoptosis; SARS-CoV

Pathway: Anti-infection; Metabolic Enzyme/Protease; Apoptosis

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (34.68 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.3871 mL	6.9354 mL	13.8708 mL
	5 mM	0.2774 mL	1.3871 mL	2.7742 mL
	10 mM	0.1387 mL	0.6935 mL	1.3871 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: 2.5 mg/mL (3.47 mM); Suspended solution; Need ultrasonic
- Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: 2.5 mg/mL (3.47 mM); Clear solution; Need warming
- 3. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: 2.5 mg/mL (3.47 mM); Suspended solution; Need ultrasonic
- 4. Add each solvent one by one: 5% DMSO >> 95% (20% SBE- β -CD in saline) Solubility: 2.5 mg/mL (3.47 mM); Suspended solution; Need ultrasonic
- Add each solvent one by one: 1% DMSO >> 99% saline
 Solubility: 0.5 mg/mL (0.69 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

Ritonavir (ABT 538) is an inhibitor of HIV protease used to treat HIV infection and AIDS. Ritonavir is also a SARS-CoV 3CL pro inhibitor with an IC $_{50}$ of 1.61 μ M.

In Vitro

Ritonavir (ABT 538) is an inhibitor of CYP3A4 mediated testosterone 6β -hydroxylation with mean K_i of 19 nM and also inhibits tolbutamide hydroxylation with IC50 of 4.2 μ M $^{[1]}$.

Ritonavir (ABT 538) is found to be a potent inhibitor of CYP3A-mediated biotransformations (nifedipine oxidation with IC $_{50}$ of 0.07 mM, 17alpha-ethynylestradiol 2-hydroxylation with IC $_{50}$ of 2 mM; terfenadine hydroxylation with IC $_{50}$ of 0.14 mM). Ritonavir is also an inhibitor of the reactions mediated by CYP2D6 (IC $_{50}$ =2.5 mM) and CYP2C9/10 (IC $_{50}$ =8.0 mM) $^{[2]}$. Ritonavir results in an increase in cell viability in uninfected human PBMC cultures. Ritonavir markedly decreases the susceptibility of PBMCs to apoptosis correlated with lower levels of caspase-1 expression, decreases in annexin V staining, and reduces caspase-3 activity in uninfected human PBMC cultures. Ritonavir inhibits induction of tumor necrosis factor (TNF) production by PBMCs and monocytes in a time- and dose-dependent manner at nontoxic concentrations [3]. Ritonavir inhibits p-glycoprotein-mediated extrusion of saquinavir with an IC $_{50}$ of 0.2 μ M, indicating a high affinity of ritonavir for p-glycoprotein [4].

Ritonavir inhibits human liver microsomal metabolism of ABT-378 potently with K_i of 13 nM. Ritonavir combined with ABT-378 (at 3:1 and 29:1 ratios) inhibits CYP3A (IC₅₀=1.1 and 4.6 μ M), albeit less potently than Ritonavir (IC₅₀=0.14 μ M)^[5]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2021 May 29;6(1):212.
- Nat Commun. 2020 Sep 4;11(1):4417.
- Int J Antimicrob Agents. 2019 Dec;54(6):814-819.
- Aging Cell. 2022 Dec 20;e13750.
- Antiviral Res. 2022 Nov 10;105463.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Eagling VA, et al. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997 Aug;44(2):190-4.
- [2]. Kumar GN, et al. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther. 1996 Apr;277(1):423-31.
- [3]. Weichold FF, et al. HIV-1 protease inhibitor ritonavir modulates susceptibility to apoptosis of uninfected T cells. J Hum Virol. 1999 Sep-Oct;2(5):261-9.
- [4]. Drewe J, et al. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem Pharmacol. 1999 May 15;57(10):1147-52.
- [5]. Kumar GN, et al. Potent inhibition of the cytochrome P-450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir: A positive drug-drug interaction. Drug Metab Dispos. 1999 Aug;27(8):902-8.
- [6]. Qi Sun, et al. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease. Signal Transduct Target Ther. 2021 May 29;6(1):212.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA