Screening Libraries

(Rac)-Atropine-d₃

Cat. No.: HY-B1205S CAS No.: 1276197-36-4 Molecular Formula: $\mathsf{C}_{17}\mathsf{H}_{20}\mathsf{D}_3\mathsf{NO}_3$

Molecular Weight: 292.39

mAChR; Endogenous Metabolite; Isotope-Labeled Compounds Target:

Pathway: GPCR/G Protein; Neuronal Signaling; Metabolic Enzyme/Protease; Others

Storage: Powder -20°C 3 years

In solvent

4°C 2 years

-80°C 6 months -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

DMSO: 50 mg/mL (171.00 mM; Need ultrasonic) In Vitro

> Ethanol: \geq 16 mg/mL (54.72 mM) PBS (pH 7.2) : ≥ 10 mg/mL (34.20 mM) DMSO : ≥ 10 mg/mL (34.20 mM) DMF: $\geq 2 \text{ mg/mL } (6.84 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.4201 mL	17.1004 mL	34.2009 mL
	5 mM	0.6840 mL	3.4201 mL	6.8402 mL
	10 mM	0.3420 mL	1.7100 mL	3.4201 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.25 mg/mL (4.28 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1.25 mg/mL (4.28 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.25 mg/mL (4.28 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	(Rac)-Atropine-d ₃ is the deuterium labeled (Rac)-Atropine[1].	
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as	

tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com