Proteins

Product Data Sheet

Propranolol hydrochloride

Cat. No.: HY-B0573 CAS No.: 318-98-9 Molecular Formula: $C_{16}H_{22}CINO_{2}$

Molecular Weight: 295.8

Target: Adrenergic Receptor; Bacterial

Pathway: GPCR/G Protein; Neuronal Signaling; Anti-infection

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

HCI

SOLVENT & SOLUBILITY

DMSO : ≥ 150 mg/mL (507.10 mM) In Vitro

H₂O: 33.33 mg/mL (112.68 mM; Need ultrasonic)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.3807 mL	16.9033 mL	33.8066 mL
	5 mM	0.6761 mL	3.3807 mL	6.7613 mL
	10 mM	0.3381 mL	1.6903 mL	3.3807 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS

Solubility: 25 mg/mL (84.52 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	Propranolol hydrochloride is a nonselective β -adrenergic receptor (β AR) antagonist, has high affinity for the β 1AR and β 2AR with K_i values of 1.8 nM and 0.8 nM, respectively ^[1] . Propranolol hydrochloride inhibits [3 H]-DHA binding to rat brain membrane preparation with an IC ₅₀ of 12 nM ^[2] . Propranolol hydrochloride is used for study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy ^[3] .
IC ₅₀ & Target	β adrenergic receptor
In Vitro	Propranolol hydrochloride (10 ⁻⁷ M-10 ⁻³ M; 24 and 48 hours) increases the total ERK1/2 levels in a dose-dependent manner, and ERK1/2 activation is observed specifically at 10 ⁻⁵ M in HemSCs ^[4] . Propranolol hydrochloride (10 ⁻⁹ M-10 ⁻³ M; 24 and 48 hours) significant decreases cell proliferation at 10 ⁻⁴ M propranolol after 24 hours and 10 ⁻⁹ M propranolol after 48 hours in HemSCs ^[4] . Propranolol hydrochloride (50 μM-200 μM; 24 hours) increases Annexin V positivity and caspase-3 activation, rapidly induces

HemSC apoptosis^[4].

Concentration:

Incubation Time:

Result:

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[4]

Western Blockmatysis		
Cell Line:	HemSC cells	
Concentration:	10 ⁻⁷ M-10 ⁻³ M	
Incubation Time:	24 and 48 hours	
Result:	Increased the total ERK1/2 levels in a dose-dependent manner.	
Cell Viability Assay ^[4]		
Cell Line:	HemSC cells	
Concentration:	10 ⁻⁹ M-10 ⁻³ M	
Incubation Time:	24 and 48 hours	
Result:	Suppressed HemSC Proliferation.	
Apoptosis Analysis ^[4]		
Cell Line:	HemSC cells	

In Vivo

Propranolol hydrochloride (orally administration; 40 mg/kg; daily) significantly reduces the vessel diameter relative to the vehicle-treated implants, and increases the number of cells that expressed phosphorylated ERK1/2 within the IH Matrigel implant^[4].

Induced HemSC cell death occurred via an apoptotic pathway.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

 $50 \, \mu M$, $100 \, \mu M$, or $200 \, \mu M$

24 hours

Animal Model:	A xenograft mouse model of IH (infantile hemangiomas) with HemSC cells ^[4]
Dosage:	40 mg/kg
Administration:	Orally administration; 40 mg/kg; daily
Result:	Improved vessel development in the IH mouse model that correlated with MAPK pathway activation.

CUSTOMER VALIDATION

- Nat Commun. 2023 May 2;14(1):2523.
- Chemosphere. 2019 Jun;225:378-387.
- Sci Signal. 2020 Nov 24;13(659):eaax0273.
- Am J Pathol. 2023 Apr 21;S0002-9440(23)00132-3.
- iScience. 2023 Jul 19.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Galandrin S, et al. Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol. 2006 Nov;70(5):1575-84. Epub 2006 Aug 1
- [2]. Briley M, et al. Evidence against beta-adrenoceptor blocking activity of diltiazem, a drug with calcium antagonist properties. Br J Pharmacol. 1980 Aug;69(4):669-73.
- [3]. Al-Majed AA, et al. Propranolol. Profiles Drug Subst Excip Relat Methodol. 2017;42:287-338.
- [4]. Munabi NC, et al. Propranolol Targets Hemangioma Stem Cells via cAMP and Mitogen-Activated Protein Kinase Regulation. Stem Cells Transl Med. 2016 Jan;5(1):45-55.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA