Proteins

Screening Libraries

Product Data Sheet

Ondansetron

Cat. No.: HY-B0002B CAS No.: 99614-02-5 Molecular Formula: C₁₈H₁₉N₃O Molecular Weight: 293.36

Target: 5-HT Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: 4°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 10 mg/mL (34.09 mM; Need ultrasonic)

 $H_2O: < 0.1 \text{ mg/mL (insoluble)}$

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.4088 mL	17.0439 mL	34.0878 mL
	5 mM	0.6818 mL	3.4088 mL	6.8176 mL
	10 mM	0.3409 mL	1.7044 mL	3.4088 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1 mg/mL (3.41 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 1 mg/mL (3.41 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1 mg/mL (3.41 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Ondansetron (GR 38032; SN 307) is a highly selective 5-HT $_3$ receptor antagonist, with IC $_{50}$ value of 103 pM. Ondansetron exerts antiemetic effects by antagonizing 5-HT receptor located on local neurons in the peripheral and central nervous system. Ondansetron suppresses nausea and vomiting caused by chemotherapy and radiation therapy. Ondansetron has orally bioactivity ^{[1][2][3][4][5][6][7][8]} .
IC ₅₀ & Target	5-HT ₃ Receptor
In Vivo	Ondansetron (GR 38032; SN 307) (2.4-6 mg/kg; i.p.; six times in 15 D) has TD_{50} with the value of 3.7±0.6 mg/kg, and LD_{50} of

4.6±0.5 mg/kg in mice^[4].

Ondansetron (8 mg; i.p.; 1 time) with Olanzapine (HY-14541) has better effectiveness in preventing CINV in NSCLC patients, particularly for the delayed type^[7].

Ondansetron (2 mg/kg; i.p.; six consecutive days) exhibits anti-inflammatory effect through 5-HT₃ receptor ^[8].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	NSCLC Patients Treated With Chemotherapy ^[7]	
Dosage:	8 mg	
Administration:	Intraperitoneal Injection (i.p.)	
Result:	Showed TD $_{50}$ and LD $_{50}$ doses with 3.7 \pm 0.6 mg/kg and 4.6 \pm 0.5 mg/kg, respectively.	
Animal Model:	Male Swiss Mice with Colitis ^[8]	
Dosage:	2 mg/kg	
Administration:	Intraperitoneal Injection (i.p.)	
Result:	Showed dramatic reduction in MPO activity and tumor necrosis factor-alpha, interleukin and interleukin-1 beta.	

CUSTOMER VALIDATION

- Int J Pharm. 2015 Dec 30;496(1):33-41.
- Prog Neuropsychopharmacol Biol Psychiatry. 2022 Nov 30;110689.
- Eur J Pharm Sci. 2023 May 22;106475.
- Journal of Radiation Research and Applied Sciences. 2023 Dec, 16(4), 100682.
- SSRN. 2023 Srep 5.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Xin Wang, et al. Effectiveness of Olanzapine Combined with Ondansetron in Prevention of Chemotherapy-Induced Nausea and Vomiting of Non-small Cell Lung Cancer. Cell Biochem Biophys. 2015 Jun;72(2):471-3.
- [2]. Azadeh Motavallian-Naeini, et al. Anti-inflammatory effect of ondansetron through 5-HT3 receptors on TNBS-induced colitis in rat. EXCLI J2012 Feb 22:11:30-44. eCollection 2012.
- [3]. Brown AM, et al. Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3A). J Physiol. 1998 Mar 15;507 (Pt 3):653-65.
- [4]. Barann M, et al. Recombinant human 5-HT3A receptors in outside-out patches of HEK 293 cells: basic properties and barbiturate effects. Naunyn Schmiedebergs Arch Pharmacol. 2000 Sep;362(3):255-65.
- [5]. Wildeboer KM, et al. Ondansetron results in improved auditory gating in DBA/2 mice through a cholinergic mechanism. Brain Res. 2009 Dec 1;1300:41-50.
- [6]. Khedhaier A, et al. Circadian rhythms in toxic effects of the serotonin antagonist ondansetron in mice. Chronobiol Int. 2003 Nov;20(6):1103-16.
- [7]. Umathe SN, et al. The 5-HT3 receptor antagonist, ondansetron, blocks the development and expression of ethanol-induced locomotor sensitization in mice. Behav Pharmacol. 2009 Feb;20(1):78-83.

Page 3 of 3 www.MedChemExpress.com