Product Data Sheet

Ofloxacin-d₈

Cat. No.: HY-B0125S1
CAS No.: 1219170-21-4
Molecular Formula: $C_{18}H_{12}D_8FN_3O_4$

Molecular Weight: 369.42

Target: Bacterial; Antibiotic

Pathway: Anti-infection

Storage: Powder -20°C 3 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro DMSO : \geq 2 mg/mL (5.41 mM)

 $DMF : \ge 2 \text{ mg/mL } (5.41 \text{ mM})$

DMSO:PBS (pH 7.2) (1:9) : \geq 0.1 mg/mL (0.27 mM) * " \geq " means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7069 mL	13.5347 mL	27.0695 mL
	5 mM	0.5414 mL	2.7069 mL	5.4139 mL
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Ofloxacin-d ₈ (Hoe-280-d8) is the deuterium labeled Ofloxacin. Ofloxacin (Hoe-280) is a fluoroquinolone whose primary mechanism of action is inhibition of bacterial DNA gyrase.
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] .

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

Page 2 of 2 www.MedChemExpress.com