Proteins

Product Data Sheet

Mitiglinide calcium hydrate

Cat. No.: HY-B0682A CAS No.: 207844-01-7

Molecular Formula: C₁₉H₂₄NO₃·1/₂Ca.H₂O

Molecular Weight: 352.46

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel 4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (70.93 mM; Need ultrasonic)

H₂O: < 0.1 mg/mL (ultrasonic; warming; heat to 60°C) (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8372 mL	14.1860 mL	28.3720 mL
	5 mM	0.5674 mL	2.8372 mL	5.6744 mL
	10 mM	0.2837 mL	1.4186 mL	2.8372 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.09 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.09 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Mitiglinide calcium hydrate (KAD-1229), an insulinotropic agent, is an ATP-sensitive K⁺ (K_{ATP}) channel antagonist. Mitiglinide calcium hydrate is highly specific to the Kir6.2/SUR1 complex (the pancreatic beta-cell KATP channel). Mitiglinide Calcium

hydrate can be used for the research of type 2 diabetes^{[1][2]}.

K_{ATP} channel^[1] IC₅₀ & Target

In Vitro Mitiglinide calcium hydrate inhibits the Kir6.2/SUR1 channel currents in a dose-dependent manner (IC50 value, 100 nM) but does not significantly inhibit either Kir6.2/SUR2A or Kir6.2/SUR2B channel currents even at high doses (more than 10 µM) in

COS-1 cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Mitiglinide Calcium hydrate (1-3 mg/kg; p.o.) suppresses the increase in plasma glucose levels seen after a meal load and the area under the curve for plasma glucose levels (AUCglucose) up to 5 h after the meal load $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Pregnant Wistar rats (12 weeks) ^[2]	
Dosage:	0.3 mg/kg, 1 mg/kg, 3 mg/kg	
Administration:	Oral administration	
Result:	Dose-dependently suppressed AUC _{glucose} levels.	

REFERENCES

[1]. Y Sunaga, et al. The effects of mitiglinide (KAD-1229), a new anti-diabetic drug, on ATP-sensitive K+ channels and insulin secretion: comparison with the sulfonylureas and nateglinide. Eur J Pharmacol. 2001 Nov 9;431(1):119-25.

[2]. Kiyoshi Ichikawa, et al. Effect of KAD-1229, a novel hypoglycaemic agent, on plasma glucose levels after meal load in type 2 diabetic rats. Clin Exp Pharmacol Physiol. May-Jun 2002;29(5-6):423-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA