Proteins

Screening Libraries

Product Data Sheet

Cat. No.: HY-B1445 CAS No.: 83701-22-8 Molecular Formula: $C_9H_{15}N_5O_4S$ Molecular Weight: 289.31

Potassium Channel Target:

Pathway: Membrane Transporter/Ion Channel

Storage: -20°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (864.12 mM; Need ultrasonic) H₂O: 50 mg/mL (172.82 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.4565 mL	17.2825 mL	34.5650 mL
	5 mM	0.6913 mL	3.4565 mL	6.9130 mL
	10 mM	0.3456 mL	1.7282 mL	3.4565 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (7.19 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (7.19 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (7.19 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Minoxidil sulfate, a potent and ATP-sensitive K^+ channel opener, is the sulfated metabolite of minoxidil. Minoxidil sulfate is considered as a vasodilator to promote hair growth in vivo ^{[1][3]} .	
IC ₅₀ & Target	IC50: K channel $^{[2]}$	
In Vitro	Minoxidil sulfate (1-100 μ M; 2 hours) significantly reduces the permeability of bloode-brain tumor barrier (BTB) in a monolayer of RBMEC in a time-dependent manner, additionally, the effects of MS on transendothelial electrical resistance	

(TEER) is Transendothelial electrical resistance (TEER) at 2 h with high concentration [2].

Minoxidil sulfate (0-100 μ M; 0-4 hours) increases the RhoA activation in brain tumor tissue by 1 h and the highest level appears at 2 h, it also significantly induces transient PKB phosphorylation at Ser-473, without affecting total PKB levels. Addiotionally, LY294002 partly prevents the phosphorylation of PKB induced by MS^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[2]

Cell Line:	Rat brain microvascular endothelial cells (RBMECs)	
Concentration:	0-100 μΜ	
Incubation Time:	15 mins, 30 mins, 1 hour, 2 hours, 4 hours	
Result:	Induced RhoA activation and PKB phosphorylation at Ser-473.	

REFERENCES

- [1]. A E Buhl, et al. Minoxidil sulfate is the active metabolite that stimulates hair follicles. J Invest Dermatol. 1990 Nov;95(5):553-7.
- [2]. Yan-ting Gu, et al. Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway. Neuropharmacology 2013 Dec;75:407-15.doi: 10.1016/j.neuropharm.
- [3]. Y Nakaya, et al. Effect of minoxidil sulfate and pinacidil on single potassium channel current in cultured human outer root sheath cells and dermal papilla cells. J Dermatol Sci. 1994 Jul;7 Suppl:S104-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA