Proteins

Product Data Sheet

Metformin

Cat. No.: HY-B0627 CAS No.: 657-24-9 Molecular Formula: $C_4H_{11}N_5$ Molecular Weight: 129.16

Target: AMPK; Autophagy; Mitophagy

Pathway: Epigenetics; PI3K/Akt/mTOR; Autophagy

Storage: -20°C, protect from light, stored under nitrogen

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light, stored under

nitrogen)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 50 mg/mL (387.12 mM; Need ultrasonic)

DMSO: 25 mg/mL (193.56 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	7.7423 mL	38.7117 mL	77.4233 mL
	5 mM	1.5485 mL	7.7423 mL	15.4847 mL
	10 mM	0.7742 mL	3.8712 mL	7.7423 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS
 - Solubility: 100 mg/mL (774.23 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (16.10 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (16.10 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy ^[1] .
IC ₅₀ & Target	AMPK
In Vitro	Metformin (1,1-Dimethylbiguanide) inhibits proliferation of ESCs in a concentration-dependent manner. The IC ₅₀ is 2.45 mM

	for A-ESCs and 7.87 mM for N-ESCs. Metformin shows pronounced effects on activation of AMPK signaling in A-ESCs from secretory phase than in cells from proliferative phase ^[3] . Metformin (0-500 μM) decreases glycogen synthesis in a dose-dependent manner with an IC ₅₀ value of 196.5 μM in cultured rat hepatocytes ^[4] . Metformin shows cell viability and cytotoxic effects on PC-3 cells with IC ₅₀ of 5 mM ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Metformin (1,1-Dimethylbiguanide; 100 mg/kg, p.o.) alone, and metformin (25, 50, 100 mg/kg) with isoproterenol groups attenuates myocyte necrosis through histopathological analysis ^[1] . Metformin (> 900 mg/kg/day, p.o.) results in moribundity/mortality and clinical signs of toxicity in Crl:CD(SD) rats ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nature. 2023 Sep;621(7977):188-195.
- Cancer Cell. 2020 Sep 14;38(3):350-365.e7.
- Cell Res. 2023 Jul 17.
- Signal Transduct Target Ther. 2023 Mar 6;8(1):95.
- Signal Transduct Target Ther. 2020 May 20;5(1):56.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Soraya H, et al. Acute treatment with metformin improves cardiac function following isoproterenol induced myocardial infarction in rats. Pharmacol Rep. 2012;64(6):1476-84.
- [2]. Quaile MP, et al. Toxicity and toxicokinetics of metformin in rats. Toxicol Appl Pharmacol. 2010 Mar 15;243(3):340-7.
- [3]. Xue J, et al. Metformin inhibits growth of eutopic stromal cells from adenomyotic endometrium via AMPK activation and subsequent inhibition of AKT phosphorylation: a possible role in the treatment of adenomyosis. Reproduction. 2013 Aug 21;146(4):397-406.
- [4]. Otto M, et al. Metformin inhibits glycogen synthesis and gluconeogenesis in cultured rat hepatocytes. Diabetes Obes Metab. 2003 May;5(3):189-94.
- [5]. Avci CB, et al. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev. 2013;14(2):765-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com