Proteins

Inhibitors

Lonidamine

Cat. No.: HY-B0486 CAS No.: 50264-69-2 Molecular Formula: $C_{15}H_{10}Cl_2N_2O_2$

Molecular Weight: 321.16

Target: Hexokinase; Mitochondrial Metabolism; Apoptosis; Parasite Pathway: Metabolic Enzyme/Protease; Apoptosis; Anti-infection

-20°C Storage: Powder 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (155.69 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.1137 mL	15.5686 mL	31.1371 mL
	5 mM	0.6227 mL	3.1137 mL	6.2274 mL
	10 mM	0.3114 mL	1.5569 mL	3.1137 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.48 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.48 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Lonidamine (AF-1890) is a hexokinase and mitochondrial pyruvate carrier inhibitor (K_i: 2.5 μM). Lonidamine also inhibits aerobic glycolysis in cancer cells. Lonidamine can be used in the research of mitochondrial metabolism and inflammation, such as pulmonary fibrosis^{[1][2][3]}.

Ki: 2.5 μM (Mitochondrial pyruvate carrier)^[2] IC₅₀ & Target

> Lonidamine (100 μM, 24 h) inhibits TGF-β-stimulated lactate production and oxygen consumption rate in AKR-2B and TIG-1 cells^[3].

Lonidamine (100 μM, 24/48 h) inhibits H2030BrM3 and A549 cell proliferation^[4]. Lonidamine (100-200 μM, 24 h) inhibits H2030BrM3 and A549 cell invasion^[4].

In Vitro

	Lonidamine (200 μM, 24	Lonidamine (100-1000 μ M, 24 h) inhibits mitochondrial complex I and II activities ^[4] . Lonidamine (200 μ M, 24 h) increases ROS generation in H2030BrM3 lung cancer cells ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	activity in BLM-induced	Lonidamine (oral administration, 10-100 mg/kg/day, d10 to d20) improves lung function by inhibiting hexokinase 2 (HK2) activity in BLM-induced pulmonary fibrosis murine model ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Lonidamine (oral administration, 10-100 mg/kg/day, d10 to d20) improves lung function by inhibiting hexokinase 2 (HK2) activity in BLM-induced pulmonary fibrosis murine model [3].		
	Dosage:	10, 30, 100 mg/kg/day		
	Administration:	Oral administration, daily, d10 to d20 after BLM treatment.		
	Result:	Partially or completely reversed the increases in HK2 and lactate induced by BLM and reduced the expression of 10 profibrotic mediators.		

CUSTOMER VALIDATION

- Cell Res. 2021 Sep;31(9):980-997.
- Cell Discov. 2020 Aug 18;6:56.
- Cell Metab. 2022 Nov 11;S1550-4131(22)00490-9.
- Cell Metab. 2022 Aug 19;S1550-4131(22)00345-X.
- ACS Nano. 2022 Jan 13.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Nancolas B, et al. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochem J. 2016 Apr 1;473(7):929-36.
- [2]. Ilya A Shutkov, et al. Ru(III) Complexes with Lonidamine-Modified Ligands. Int J Mol Sci. 2021 Dec 15;22(24):13468.
- [3]. Xueqian Yin, et al. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci Signal. 2019 Dec 17;12(612):eaax4067.
- [4]. Gang Cheng, et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun. 2019 May 17;10(1):2205.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA