

Product Data Sheet

Lincomycin hydrochloride monohydrate

Cat. No.: HY-B1358 **CAS No.:** 7179-49-9

Molecular Formula: C₁₈H₃₇ClN₂O₇S

Molecular Weight: 461.01

Target: Bacterial; Antibiotic

Pathway: Anti-infection

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (216.92 mM)

H₂O:50 mg/mL (108.46 mM; Need ultrasonic)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1692 mL	10.8458 mL	21.6915 mL
	5 mM	0.4338 mL	2.1692 mL	4.3383 mL
	10 mM	0.2169 mL	1.0846 mL	2.1692 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- Add each solvent one by one: PBS Solubility: 120 mg/mL (260.30 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.42 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.42 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.42 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Lincomycin hydrochloride monohydrate is a narrow-spectrum antibiotic, has similar effects to erythromycin, which has a good effect on gram-positive coccus, mainly used to inhibit the synthesis of bacterial cell protein $^{[1][2]}$.
In Vivo	Lincomycin (25 and 50 mg/kg, intravenously) depresses neuromuscular transmission to a degree which depended on stimulation frequencies in the rabbit sciatic nerve-gastrocnemius muscle preparation ^[3] .

MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
Animal Model:	Adult albino New Zealand rabbits weighing 2.5-3.5 ${\rm kg}^{[3]}$.	
Dosage:	25 and 50 mg/kg.	
Administration:	Intravenously.	
Result:	Depressed neuromuscular transmission.	

CUSTOMER VALIDATION

- Chemosphere. 2019 Jun;225:378-387.
- Microb Biotechnol. 2021 Mar 15.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. MACLEOD AJ, et al. LINCOMYCIN: A NEW ANTIBIOTIC ACTIVE AGAINST STAPHYLOCOCCI AND OTHER GRAM-POSITIVE COCCI: CLINICAL AND LABORATORY STUDIES. Can Med Assoc J. 1964 Nov 14;91:1056-60.

[2]. Lin AH, et al. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob Agents Chemother. 1997 Oct;41(10):2127-31.

[3]. PR McMaster, et al. The effect of two chlorinated lincomycin analogues against acute toxoplasmosis in mice. Am J Trop Med Hyg. 1973 Jan;22(1):14-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com\\$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA