Product Data Sheet

L-Ornithine

Cat. No.: HY-B1352 CAS No.: 70-26-8 Molecular Formula: $C_5H_{12}N_2O_2$ Molecular Weight: 132.16

Target: **Endogenous Metabolite** Pathway: Metabolic Enzyme/Protease

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 50 mg/mL (378.33 mM; Need ultrasonic) DMSO: < 1 mg/mL (insoluble or slightly soluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	7.5666 mL	37.8329 mL	75.6659 mL
	5 mM	1.5133 mL	7.5666 mL	15.1332 mL
	10 mM	0.7567 mL	3.7833 mL	7.5666 mL

Please refer to the solubility information to select the appropriate solvent.

BIOL	α CI	~ 1	ACTI	MTV
вил	10/61	LAI	$\Delta U = I$	$\mathbf{v} = \mathbf{v}$

Description L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective^{[1][2]}.

Human Endogenous Microbial Metabolite IC₅₀ & Target Metabolite

In Vitro L-Ornithine (0-10 mM) activates the CaSR in a concentration-dependent manner and exerts effects on Ca²⁺ signaling in HK-2

L-Ornithine (10 mM) activates TRPC channels mediated Ca²⁺ entry pathway in HK-2 cells^[2].

L-Ornithine (100 or 300 μM; 24 h) shows the protection against ROS generation in HK-2 cells via ROCE pathway^[2].

L-Ornithine (10 μ M) can protect the ROS and oxidative damage in HK-2 cells exposed to $H_2O_2^{[2]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Page 1 of 2 www.MedChemExpress.com

CUSTOMER VALIDATION

- Molecules. 2023 Apr 11, 28(8), 3375.
- ChemistrySelect. 2023 Jan 12.
- bioRxiv. 2023 Jun 3.

See more customer validations on $\underline{www.\mathsf{MedChemExpress.com}}$

REFERENCES

[1]. Demura S, et al. Effect of L-ornithine hydrochloride ingestion on intermittent maximal anaerobic cycle ergometer performance and fatigue recovery after exercise. Eur J Appl Physiol. 2011 Nov;111(11):2837-43.

[2]. Shin S, et al. I-ornithine activates Ca2+ signaling to exert its protective function on human proximal tubular cells. Cell Signal. 2020 Mar;67:109484.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA