

Ketotifen

Cat. No.: HY-B0157

CAS No.: 34580-13-7 Molecular Formula: $C_{19}H_{19}NOS$ 309.43 Molecular Weight:

Target: Endogenous Metabolite; Histamine Receptor; SARS-CoV; Influenza Virus

Pathway: Metabolic Enzyme/Protease; GPCR/G Protein; Immunology/Inflammation; Neuronal

Signaling; Anti-infection

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description Ketotifen (HC 20-511) is an orally active second-generation noncompetitive histamine 1 (H1) receptor blocker and mast cell stabilizer. Ketotifen can block 6-phosphogluconate dehydrogenase (PGD) in vitro. Ketotifen also has antiviral activity against

SARS-CoV-2 and Influenza virus. Ketotifen can be used to the research of autoimmune encephalomyelitis (EAE) and asthma

attack prevention^{[1][2][3][4]}.

IC₅₀ & Target H₁ Receptor

In Vitro Ketotifen (0-100 μ M; 2 or 4 days) inhibits SARS-CoV-2 with an EC₅₀ of 48.9 μ M; and increases the percentage inhibition of

SARS-CoV-2 to 79%, 83% and 93% when co-administers with 25, 50 and 100 µM Indomethacin, respectively [3].

Ketotifen (0-50 μM; 24 h) has inhibitory activity against PR8, pH1N1 and H3N2 with EC₅₀s of 5.9 μM, 33.7 μM and 48.5 μM, respectively; and exhibits relatively low cytotoxicity in MDCK cells (EC₅₀=291 μ M)^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Ketotifen (80 mg/kg; i.g.; daily for 3 days) reduces end organ damage and mortality in mice infected with influenza virus^[4]. Ketotifen (0.4 mg/kg; i.p.; daily for 10 days) reduces encephalomyelitis (EAE) prevalence and severity^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Female C57BL/6 mice (4-6 weeks; intranasal infection with 1×10 3 TCID $_{50}$ of PR8 in 30 μL of DMEM) $^{[4]}$	
Dosage:	80 mg/kg	
Administration:	i.g.; daily for 3 days	
Result:	Reduced end organ damage and mortality in infected mice.	
Animal Model:	Female C57BL/6 mice (5-6 weeks old; subcutaneously immunized with 150 μg of MOG ₃₅₋₅₅ peptide containing 4 mg/mL of Mycobacterium tuberculosis) ^[5]	
Dosage:	0.4 mg/kg	
Administration:	i.p.; daily for 10 days (from the 7th day of infection)	

In Vivo

Result:	Reduced EAE prevalence and severity; reduced oxidative stress status and inflammasome
	activation at the CNS; reduced the amount of T cells, especially Th1, in the CNS;
	downregulated local mRNA expression for mast cell enzymes and preserves blood-CNS
	barrier permeability; triggered lymphocyte accumulation in draining lymph nodes.

CUSTOMER VALIDATION

• Cell Oncol. 2023 Apr 29.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Klooker TK, et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut. 2010 Sep;59(9):1213-21.
- [2]. Zhang H, et al. Advances in the discovery of exosome inhibitors in cancer. J Enzyme Inhib Med Chem. 2020;35(1):1322-1330.
- [3]. Kiani P, et al. In Vitro Assessment of the Antiviral Activity of Ketotifen, Indomethacin and Naproxen, Alone and in Combination, against SARS-CoV-2. Viruses. 2021 Mar 26;13(4):558.
- [4]. Enkirch T, et al. Identification and in vivo Efficacy Assessment of Approved Orally Bioavailable Human Host Protein-Targeting Drugs With Broad Anti-influenza A Activity. Front Immunol. 2019 Jun 5;10:1097.
- [5]. Pinke KH, et al. Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy? Neurotherapeutics. 2020 Jan;17(1):218-234.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA