Product Data Sheet

Josamycin

 Cat. No.:
 HY-B1920

 CAS No.:
 16846-24-5

 Molecular Formula:
 C₄₂H₆₉NO₁₅

 Molecular Weight:
 827.99

Target: Bacterial; Antibiotic

Pathway: Anti-infection

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 41.67 \text{ mg/mL} (50.33 \text{ mM})$

H₂O: 8.33 mg/mL (10.06 mM; ultrasonic and adjust pH to 6 with HCl)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.2077 mL	6.0387 mL	12.0774 mL
	5 mM	0.2415 mL	1.2077 mL	2.4155 mL
	10 mM	0.1208 mL	0.6039 mL	1.2077 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (3.02 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: 2.5 mg/mL (3.02 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (3.02 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant K _d from ribosome for Josamycin is 5.5 nM.
IC ₅₀ & Target	Macrolide
In Vitro	Studies show that the average lifetime on the ribosome is 3 h for Josamycin and that the dissociation constants for Josamycin binding to the ribosome is 5.5 nM. Josamycin slows down formation of the first peptide bond of a nascent

peptide in an amino acid-dependent way and completely inhibits formation of the second or third peptide bond, depending on peptide sequence at a saturating drug concentration, synthesis of fulllength proteins is completely shut down by Josamycin. At a saturating drug concentration, synthesis of fulllength proteins is completely shut down by Josamycin^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Blood and tissue levels of Josamycin after oral administration are 200 mg/kg to rabbits. Tissue levels are generally much higher than the blood levels, and 3 h after the administration, when the blood level is very low, the tissue levels are rather higher than those 1 h after the dose. One hour after the medication, the level in the lungs is the highest of all the tissue levels [2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

Josamycin is prepared in polymix buffer, containing 5 mM magnesium acetate, 5 mM ammonium chloride, 95 mM potassium chloride, 0.5 mM calcium chloride, 8 mM putrescine, 1 mM spermidine, 5 mM potassium phosphate, and 1 mM dithioerythritol. Josamycin at different concentrations (2, 3, 4, and 6 μ M is added to preinitiated ribosomes to start the incubation. One volume of elongation mix is added to 1 volume of reaction mix at each incubation time, and after 10 s the reaction is quenched with formic acid. The association rates are estimated from the fraction of tri-peptide-forming ribosomes^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [2]

Rat: Tritium-labelled Josamycin (200 mg/kg) is orally administrated to rats. The blood and tissue levels are determined at 1 h and 3 h by bioassay^[2].

Mouse: Tritium-labelled Josamycin (200 mg/kg) is orally administrated to mice. The blood and tissue levels are determined at 1 h and 3 h by bioassay^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Lovmar M, et al. Kinetics of macrolide action: the Josamycin and erythromycin cases. J Biol Chem. 2004 Dec 17;279(51):53506-15.

[2]. Osono T, et al. Pharmacokinetics of macrolides, lincosamides and streptogramins. J Antimicrob Chemother. 1985 Jul;16 Suppl A:151-66.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA