Product Data Sheet

Hydroxyzine dihydrochloride

Cat. No.: HY-B0548A CAS No.: 2192-20-3 Molecular Formula: $C_{21}H_{29}Cl_3N_2O_2$

Target: **Histamine Receptor**

Pathway: GPCR/G Protein; Immunology/Inflammation; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

447.83

SOLVENT & SOLUBILITY

In Vitro

Molecular Weight:

 $H_2O : \ge 150 \text{ mg/mL} (334.95 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2330 mL	11.1650 mL	22.3299 mL
	5 mM	0.4466 mL	2.2330 mL	4.4660 mL
	10 mM	0.2233 mL	1.1165 mL	2.2330 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS

Solubility: 100 mg/mL (223.30 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	Hydroxyzine dihydrochloride, a benzodiazepine antihistamine agent, acts as a orally active histamine H1-receptor and serotonin antagonist. Hydroxyzine dihydrochloride has anxiolytic effect and can be used forthe research of generalised anxiety disorder ^{[1][2]} .
In Vitro	Hydroxyzine dihydrochloride inhibits carbachol (10 μ M)-induced serotonin release by 34% at 10 μ M, by 25% 1 μ M and by 17% 0.1 μ M in pretreated bladder slices for 60 min ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Hydroxyzine dihydrochloride (12.5 mg/kg, 25 mg/kg and 50 mg/kg i.p.) shows little direct analgesic activity but markedly potentiates only the effect of morphine on the vocalization after-discharge which represents the affective component of pain in rats. Hydroxyzine dihydrochloride (50 mg/kg i.p.) potentiates morphine on the tail-flick test, while Hydroxyzine (12.5 mg/kg i.p.) decreases morphine antinociception in rats ^[3] .

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Minogiannis, P., et al., Hydroxyzine inhibits neurogenic bladder mast cell activation. Int J Immunopharmacol, 1998. 20(10): p. 553-63.
- [2]. Morichi, R. and G. Pepeu, A study of the influence of hydroxyzine and diazepam on morphine antinociceptoion in the rat. Pain, 1979. 7(2): p. 173-80.
- [3]. Nikita Shekhar Sawantdesai, et al. Evaluation of anxiolytic effects of aripiprazole and hydroxyzine as a combination in mice. J Basic Clin Pharm. 2016 Sep;7(4):97-104.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com