Halazone

MedChemExpress

Cat. No.:	HY-B1386	
CAS No.:	80-13-7	
Molecular Formula:	C ₇ H ₅ Cl ₂ NO ₄ S	
Molecular Weight:	270.09	0
Target:	Bacterial; Carbonic Anhydrase; Sodium Channel	
Pathway:	Anti-infection; Metabolic Enzyme/Protease; Membrane Transporter/Ion Channel	N Ň
Storage:	4°C, sealed storage, away from moisture	CI
	* The compound is unstable in solutions, freshly prepared is recommended.	

Ο ОH

Product Data Sheet

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions		1 mM	3.7025 mL	18.5123 mL	37.0247 mL
		5 mM	0.7405 mL	3.7025 mL	7.4049 mL
	10 mM	0.3702 mL	1.8512 mL	3.7025 mL	

Description	Halazone is an atypical antimicrobial sulfonamide derivative and a carbonic anhydrase II inhibitor with a K _d value of 1.45 μM. Halazone protects sodium channels from inactivation. Halazone is widely used for disinfection of drinking water ^{[1][2]} .	
IC ₅₀ & Target	CAM	
In Vitro	Halazone is chemically closely related to Chloramine-T, the nitrogen atom is linked with two instead of one chlorine atom and, certainly more important here, a methyl group is replaced by a carboxyl group. The effect of Halazone on the sodium current is studied in voltage-clamped single nerve fibers of the frog. The oxidant Halazone drastically inhibits inactivation ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

[1]. M Rack, et al. Effects of Some Chemical Reagents on Sodium Current Inactivation in Myelinated Nerve Fibers of the Frog. Biophys J. 1986 Oct;50(4):557-64.

[2]. Rema Iyer, et al. Inhibition Profiling of Human Carbonic Anhydrase II by High-Throughput Screening of Structurally Diverse, Biologically Active Compounds. J Biomol

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA